Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 13(2): 127-33, 2011 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-22186952

RESUMEN

Satellite cells are a heterogeneous population of stem and progenitor cells that are required for the growth, maintenance and regeneration of skeletal muscle. The transcription factors paired-box 3 (PAX3) and PAX7 have essential and overlapping roles in myogenesis. PAX3 acts to specify embryonic muscle precursors, whereas PAX7 enforces the satellite cell myogenic programme while maintaining the undifferentiated state. Recent experiments have suggested that PAX7 is dispensable in adult satellite cells. However, these findings are controversial, and the issue remains unresolved.


Asunto(s)
Músculo Esquelético/fisiología , Regeneración/fisiología , Células Satélite del Músculo Esquelético/fisiología , Adulto , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Crecimiento y Desarrollo/genética , Crecimiento y Desarrollo/fisiología , Humanos , Hipertrofia , Modelos Biológicos , Desarrollo de Músculos/genética , Desarrollo de Músculos/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Factores de Transcripción Paired Box/fisiología , Regeneración/genética , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , Cicatrización de Heridas/genética , Cicatrización de Heridas/fisiología
2.
Physiol Rev ; 93(1): 23-67, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23303905

RESUMEN

Adult skeletal muscle in mammals is a stable tissue under normal circumstances but has remarkable ability to repair after injury. Skeletal muscle regeneration is a highly orchestrated process involving the activation of various cellular and molecular responses. As skeletal muscle stem cells, satellite cells play an indispensible role in this process. The self-renewing proliferation of satellite cells not only maintains the stem cell population but also provides numerous myogenic cells, which proliferate, differentiate, fuse, and lead to new myofiber formation and reconstitution of a functional contractile apparatus. The complex behavior of satellite cells during skeletal muscle regeneration is tightly regulated through the dynamic interplay between intrinsic factors within satellite cells and extrinsic factors constituting the muscle stem cell niche/microenvironment. For the last half century, the advance of molecular biology, cell biology, and genetics has greatly improved our understanding of skeletal muscle biology. Here, we review some recent advances, with focuses on functions of satellite cells and their niche during the process of skeletal muscle regeneration.


Asunto(s)
Células Madre Adultas/metabolismo , Desarrollo de Músculos , Músculo Esquelético/metabolismo , Enfermedades Musculares/metabolismo , Regeneración , Células Satélite del Músculo Esquelético/metabolismo , Nicho de Células Madre , Células Madre Adultas/patología , Animales , Biomarcadores/metabolismo , Diferenciación Celular , Proliferación Celular , Regulación de la Expresión Génica , Humanos , Desarrollo de Músculos/genética , Músculo Esquelético/lesiones , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Enfermedades Musculares/fisiopatología , Regeneración/genética , Células Satélite del Músculo Esquelético/patología
3.
Mol Cell ; 47(3): 457-68, 2012 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-22771117

RESUMEN

In skeletal myogenesis, the transcription factor MyoD activates distinct transcriptional programs in progenitors compared to terminally differentiated cells. Using ChIP-Seq and gene expression analyses, we show that in primary myoblasts, Snail-HDAC1/2 repressive complex binds and excludes MyoD from its targets. Notably, Snail binds E box motifs that are G/C rich in their central dinucleotides, and such sites are almost exclusively associated with genes expressed during differentiation. By contrast, Snail does not bind the A/T-rich E boxes associated with MyoD targets in myoblasts. Thus, Snai1-HDAC1/2 prevent MyoD occupancy on differentiation-specific regulatory elements, and the change from Snail to MyoD binding often results in enhancer switching during differentiation. Furthermore, we show that a regulatory network involving myogenic regulatory factors (MRFs), Snai1/2, miR-30a, and miR-206 acts as a molecular switch that controls entry into myogenic differentiation. Together, these results reveal a regulatory paradigm that directs distinct gene expression programs in progenitors versus terminally differentiated cells.


Asunto(s)
Elementos de Facilitación Genéticos/fisiología , Desarrollo de Músculos/genética , Proteína MioD/metabolismo , Mioblastos Esqueléticos/fisiología , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Diferenciación Celular/genética , Ratones , Datos de Secuencia Molecular , Proteína MioD/química , Proteína MioD/genética , Mioblastos Esqueléticos/citología , Cultivo Primario de Células , Unión Proteica/genética , Factores de Transcripción de la Familia Snail , Factores de Transcripción/química , Factores de Transcripción/genética , Transcripción Genética/fisiología
4.
Nucleic Acids Res ; 46(14): 7221-7235, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30016497

RESUMEN

Muscle-specific transcription factor MyoD orchestrates the myogenic gene expression program by binding to short DNA motifs called E-boxes within myogenic cis-regulatory elements (CREs). Genome-wide analyses of MyoD cistrome by chromatin immnunoprecipitation sequencing shows that MyoD-bound CREs contain multiple E-boxes of various sequences. However, how E-box numbers, sequences and their spatial arrangement within CREs collectively regulate the binding affinity and transcriptional activity of MyoD remain largely unknown. Here, by an integrative analysis of MyoD cistrome combined with genome-wide analysis of key regulatory histones and gene expression data we show that the affinity landscape of MyoD is driven by multiple E-boxes, and that the overall binding affinity-and associated nucleosome positioning and epigenetic features of the CREs-crucially depend on the variant sequences and positioning of the E-boxes within the CREs. By comparative genomic analysis of single nucleotide polymorphism (SNPs) across publicly available data from 17 strains of laboratory mice, we show that variant sequences within the MyoD-bound motifs, but not their genome-wide counterparts, are under selection. At last, we show that the quantitative regulatory effect of MyoD binding on the nearby genes can, in part, be predicted by the motif composition of the CREs to which it binds. Taken together, our data suggest that motif numbers, sequences and their spatial arrangement within the myogenic CREs are important determinants of the cis-regulatory code of myogenic CREs.


Asunto(s)
Elementos E-Box/genética , Desarrollo de Músculos/genética , Proteína MioD/genética , Proteína MioD/metabolismo , Transcripción Genética/genética , Activación Transcripcional/genética , Animales , Secuencia de Bases/genética , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/genética , Expresión Génica/genética , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Ratones , Desarrollo de Músculos/fisiología , Motivos de Nucleótidos/genética , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas/genética
5.
Semin Cell Dev Biol ; 72: 10-18, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29127045

RESUMEN

The Myogenic Regulatory Factors (MRFs) Myf5, MyoD, myogenin and MRF4 are members of the basic helix-loop-helix family of transcription factors that control the determination and differentiation of skeletal muscle cells during embryogenesis and postnatal myogenesis. The dynamics of their temporal and spatial expression as well as their biochemical properties have allowed the identification of a precise and hierarchical relationship between the four MRFs. This relationship establishes the myogenic lineage as well as the maintenance of the terminal myogenic phenotype. The application of genome-wide technologies has provided important new information as to how the MRFs function to activate muscle gene expression. Application of combined functional genomics technologies along with single cell lineage tracing strategies will allow a deeper understanding of the mechanisms mediating myogenic determination, cell differentiation and muscle regeneration.


Asunto(s)
Diferenciación Celular/genética , Linaje de la Célula/genética , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo , Factores Reguladores Miogénicos/genética , Regeneración/genética , Animales , Regulación del Desarrollo de la Expresión Génica , Ratones , Músculo Esquelético/citología , Músculo Esquelético/embriología , Factores Reguladores Miogénicos/clasificación , Filogenia
6.
Genes Dev ; 25(8): 789-94, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21498568

RESUMEN

Satellite cells (SCs) sustain muscle growth and empower adult skeletal muscle with vigorous regenerative abilities. Here, we report that EZH2, the enzymatic subunit of the Polycomb-repressive complex 2 (PRC2), is expressed in both Pax7+/Myf5⁻ stem cells and Pax7+/Myf5+ committed myogenic precursors and is required for homeostasis of the adult SC pool. Mice with conditional ablation of Ezh2 in SCs have fewer muscle postnatal Pax7+ cells and reduced muscle mass and fail to appropriately regenerate. These defects are associated with impaired SC proliferation and derepression of genes expressed in nonmuscle cell lineages. Thus, EZH2 controls self-renewal and proliferation, and maintains an appropriate transcriptional program in SCs.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Células Madre/citología , Células Madre/metabolismo , Transcripción Genética/genética , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Proliferación Celular , Inmunoprecipitación de Cromatina , Proteína Potenciadora del Homólogo Zeste 2 , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , N-Metiltransferasa de Histona-Lisina/genética , Immunoblotting , Etiquetado Corte-Fin in Situ , Ratones , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismo , Complejo Represivo Polycomb 2
7.
Development ; 142(9): 1572-81, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25922523

RESUMEN

Muscle stem cells, termed satellite cells, are crucial for skeletal muscle growth and regeneration. In healthy adult muscle, satellite cells are quiescent but poised for activation. During muscle regeneration, activated satellite cells transiently re-enter the cell cycle to proliferate and subsequently exit the cell cycle to differentiate or self-renew. Recent studies have demonstrated that satellite cells are heterogeneous and that subpopulations of satellite stem cells are able to perform asymmetric divisions to generate myogenic progenitors or symmetric divisions to expand the satellite cell pool. Thus, a complex balance between extrinsic cues and intrinsic regulatory mechanisms is needed to tightly control satellite cell cycle progression and cell fate determination. Defects in satellite cell regulation or in their niche, as observed in degenerative conditions such as aging, can impair muscle regeneration. Here, we review recent discoveries of the intrinsic and extrinsic factors that regulate satellite cell behaviour in regenerating and degenerating muscles.


Asunto(s)
Envejecimiento/fisiología , Linaje de la Célula/fisiología , Modelos Biológicos , Desarrollo de Músculos/fisiología , Músculo Esquelético/fisiología , Regeneración/fisiología , Células Satélite del Músculo Esquelético/fisiología , Animales , Ciclo Celular/fisiología , Diferenciación Celular/fisiología , Señales (Psicología) , Humanos , Transducción de Señal/fisiología
8.
Circ Res ; 118(7): 1143-50; discussion 1150, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-27034276

RESUMEN

This "Controversies in Cardiovascular Research" article evaluates the evidence for and against the hypothesis that the circulating blood level of growth differentiation factor 11 (GDF11) decreases in old age and that restoring normal GDF11 levels in old animals rejuvenates their skeletal muscle and reverses pathological cardiac hypertrophy and cardiac dysfunction. Studies supporting the original GDF11 hypothesis in skeletal and cardiac muscle have not been validated by several independent groups. These new studies have either found no effects of restoring normal GDF11 levels on cardiac structure and function or have shown that increasing GDF11 or its closely related family member growth differentiation factor 8 actually impairs skeletal muscle repair in old animals. One possible explanation for what seems to be mutually exclusive findings is that the original reagent used to measure GDF11 levels also detected many other molecules so that age-dependent changes in GDF11 are still not well known. The more important issue is whether increasing blood [GDF11] repairs old skeletal muscle and reverses age-related cardiac pathologies. There are substantial new and existing data showing that GDF8/11 can exacerbate rather than rejuvenate skeletal muscle injury in old animals. There is also new evidence disputing the idea that there is pathological hypertrophy in old C57bl6 mice and that GDF11 therapy can reverse cardiac pathologies. Finally, high [GDF11] causes reductions in body and heart weight in both young and old animals, suggestive of a cachexia effect. Our conclusion is that elevating blood levels of GDF11 in the aged might cause more harm than good.


Asunto(s)
Envejecimiento/patología , Proteínas Morfogenéticas Óseas/uso terapéutico , Factores de Diferenciación de Crecimiento/uso terapéutico , Enfermedades Musculares/tratamiento farmacológico , Envejecimiento/sangre , Animales , Proteínas Morfogenéticas Óseas/sangre , Proteínas Morfogenéticas Óseas/deficiencia , Proteínas Morfogenéticas Óseas/farmacología , Proteínas Morfogenéticas Óseas/toxicidad , Caquexia/inducido químicamente , Células Cultivadas , Evaluación Preclínica de Medicamentos , Factores de Diferenciación de Crecimiento/sangre , Factores de Diferenciación de Crecimiento/deficiencia , Factores de Diferenciación de Crecimiento/farmacología , Factores de Diferenciación de Crecimiento/toxicidad , Corazón/efectos de los fármacos , Humanos , Hipertrofia , Ratones Endogámicos C57BL , Modelos Animales , Músculo Esquelético/lesiones , Músculo Esquelético/fisiología , Músculos/patología , Enfermedades Musculares/fisiopatología , Miocardio/patología , Miostatina/fisiología , Miostatina/uso terapéutico , Miostatina/toxicidad , Parabiosis , Proteínas Recombinantes/uso terapéutico , Proteínas Recombinantes/toxicidad , Regeneración/efectos de los fármacos , Reproducibilidad de los Resultados , Transducción de Señal , Método Simple Ciego , Proteína Smad2/fisiología , Proteína smad3/fisiología
9.
Proc Natl Acad Sci U S A ; 112(38): E5246-52, 2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26372956

RESUMEN

Compensatory growth and regeneration of skeletal muscle is dependent on the resident stem cell population, satellite cells (SCs). Self-renewal and maintenance of the SC niche is coordinated by the paired-box transcription factor Pax7, and yet continued expression of this protein inhibits the myoblast differentiation program. As such, the reduction or removal of Pax7 may denote a key prerequisite for SCs to abandon self-renewal and acquire differentiation competence. Here, we identify caspase 3 cleavage inactivation of Pax7 as a crucial step for terminating the self-renewal process. Inhibition of caspase 3 results in elevated Pax7 protein and SC self-renewal, whereas caspase activation leads to Pax7 cleavage and initiation of the myogenic differentiation program. Moreover, in vivo inhibition of caspase 3 activity leads to a profound disruption in skeletal muscle regeneration with an accumulation of SCs within the niche. We have also noted that casein kinase 2 (CK2)-directed phosphorylation of Pax7 attenuates caspase-directed cleavage. Together, these results demonstrate that SC fate is dependent on opposing posttranslational modifications of the Pax7 protein.


Asunto(s)
Caspasa 3/metabolismo , Músculo Esquelético/metabolismo , Factor de Transcripción PAX7/metabolismo , Células Satélite del Músculo Esquelético/citología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Caseína Quinasas/metabolismo , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Fosforilación , Proteínas Recombinantes/metabolismo , Regeneración , Homología de Secuencia de Aminoácido , Células Madre/citología
10.
J Cell Sci ; 127(Pt 21): 4543-8, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25300792

RESUMEN

Muscle stem cells facilitate the long-term regenerative capacity of skeletal muscle. This self-renewing population of satellite cells has only recently been defined through genetic and transplantation experiments. Although muscle stem cells remain in a dormant quiescent state in uninjured muscle, they are poised to activate and produce committed progeny. Unlike committed myogenic progenitor cells, the self-renewal capacity gives muscle stem cells the ability to engraft as satellite cells and capitulate long-term regeneration. Similar to other adult stem cells, understanding the molecular regulation of muscle stem cells has significant implications towards the development of pharmacological or cell-based therapies for muscle disorders. This Cell Science at a Glance article and accompanying poster will review satellite cell characteristics and therapeutic potential, and provide an overview of the muscle stem cell hallmarks: quiescence, self-renewal and commitment.


Asunto(s)
Músculo Esquelético/citología , Células Madre/citología , Células Madre/metabolismo , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Inmunohistoquímica , Ratones , Factor de Transcripción PAX7/metabolismo , Células Satélite del Músculo Esquelético/citología
11.
Proc Natl Acad Sci U S A ; 110(41): 16474-9, 2013 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-24065826

RESUMEN

Extensive analyses of mice carrying null mutations in paired box 7 (Pax7) have confirmed the progressive loss of the satellite cell lineage in skeletal muscle, resulting in severe muscle atrophy and death. A recent study using floxed alleles and tamoxifen-induced inactivation concluded that after 3 wk of age, Pax7 was entirely dispensable for satellite cell function. Here, we demonstrate that Pax7 is an absolute requirement for satellite cell function in adult skeletal muscle. Following Pax7 deletion, satellite cells and myoblasts exhibit cell-cycle arrest and dysregulation of myogenic regulatory factors. Maintenance of Pax7 deletion through continuous tamoxifen administration prevented regrowth of Pax7-expressing satellite cells and a profound muscle regeneration deficit that resembles the phenotype of skeletal muscle following genetically engineered ablation of satellite cells. Therefore, we conclude that Pax7 is essential for regulating the expansion and differentiation of satellite cells during both neonatal and adult myogenesis.


Asunto(s)
Desarrollo de Músculos/fisiología , Músculo Esquelético/fisiología , Factor de Transcripción PAX7/metabolismo , Regeneración/fisiología , Células Satélite del Músculo Esquelético/fisiología , Animales , Western Blotting , Femenino , Técnica del Anticuerpo Fluorescente , Ratones , Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , Tamoxifeno
12.
PLoS Genet ; 9(7): e1003626, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23874225

RESUMEN

Prdm16 determines the bidirectional fate switch of skeletal muscle/brown adipose tissue (BAT) and regulates the thermogenic gene program of subcutaneous white adipose tissue (SAT) in mice. Here we show that miR-133a, a microRNA that is expressed in both BAT and SATs, directly targets the 3' UTR of Prdm16. The expression of miR-133a dramatically decreases along the commitment and differentiation of brown preadipocytes, accompanied by the upregulation of Prdm16. Overexpression of miR-133a in BAT and SAT cells significantly inhibits, and conversely inhibition of miR-133a upregulates, Prdm16 and brown adipogenesis. More importantly, double knockout of miR-133a1 and miR-133a2 in mice leads to elevations of the brown and thermogenic gene programs in SAT. Even 75% deletion of miR-133a (a1(-/-)a2(+/-) ) genes results in browning of SAT, manifested by the appearance of numerous multilocular UCP1-expressing adipocytes within SAT. Additionally, compared to wildtype mice, miR-133a1(-/-)a2(+/-) mice exhibit increased insulin sensitivity and glucose tolerance, and activate the thermogenic gene program more robustly upon cold exposure. These results together elucidate a crucial role of miR-133a in the regulation of adipocyte browning in vivo.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Diferenciación Celular/genética , Proteínas de Unión al ADN/genética , MicroARNs/genética , Factores de Transcripción/genética , Adipocitos/citología , Adipocitos/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , MicroARNs/metabolismo , Termogénesis/genética , Termogénesis/fisiología , Factores de Transcripción/metabolismo
13.
EMBO Rep ; 14(12): 1062-72, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24232182

RESUMEN

Satellite cells, the quintessential skeletal muscle stem cells, reside in a specialized local environment whose anatomy changes dynamically during tissue regeneration. The plasticity of this niche is attributable to regulation by the stem cells themselves and to a multitude of functionally diverse cell types. In particular, immune cells, fibrogenic cells, vessel-associated cells and committed and differentiated cells of the myogenic lineage have emerged as important constituents of the satellite cell niche. Here, we discuss the cellular dynamics during muscle regeneration and how disease can lead to perturbation of these mechanisms. To define the role of cellular components in the muscle stem cell niche is imperative for the development of cell-based therapies, as well as to better understand the pathobiology of degenerative conditions of the skeletal musculature.


Asunto(s)
Desarrollo de Músculos , Músculo Esquelético/fisiología , Regeneración , Células Satélite del Músculo Esquelético/metabolismo , Nicho de Células Madre , Animales , Humanos , Músculo Esquelético/citología , Músculo Esquelético/crecimiento & desarrollo , Células Satélite del Músculo Esquelético/fisiología
14.
Bioessays ; 35(3): 231-41, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22886714

RESUMEN

Cell-based therapies for degenerative diseases of the musculature remain on the verge of feasibility. Myogenic cells are relatively abundant, accessible, and typically harbor significant proliferative potential ex vivo. However, their use for therapeutic intervention is limited due to several critical aspects of their complex biology. Recent insights based on mouse models have advanced our understanding of the molecular mechanisms controlling the function of myogenic progenitors significantly. Moreover, the discovery of atypical myogenic cell types with the ability to cross the blood-muscle barrier has opened exciting new therapeutic avenues. In this paper, we outline the major problems that are currently associated with the manipulation of myogenic cells and discuss promising strategies to overcome these obstacles.


Asunto(s)
Músculo Esquelético/citología , Trasplante de Células Madre , Células Madre/citología , Animales , Comunicación Celular , Humanos , Células Satélite del Músculo Esquelético/citología , Nicho de Células Madre
15.
Proc Natl Acad Sci U S A ; 109(50): 20614-9, 2012 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-23185011

RESUMEN

Duchenne muscular dystrophy (DMD) is a devastating genetic muscular disorder of childhood marked by progressive debilitating muscle weakness and wasting, and ultimately death in the second or third decade of life. Wnt7a signaling through its receptor Fzd7 accelerates and augments regeneration by stimulating satellite stem cell expansion through the planar cell polarity pathway, as well as myofiber hypertrophy through the AKT/mammalian target of rapamycin (mTOR) anabolic pathway. We investigated the therapeutic potential of the secreted factor Wnt7a for focal treatment of dystrophic DMD muscles using the mdx mouse model, and found that Wnt7a treatment efficiently induced satellite cell expansion and myofiber hypertrophy in treated mucles in mdx mice. Importantly, Wnt7a treatment resulted in a significant increase in muscle strength, as determined by generation of specific force. Furthermore, Wnt7a reduced the level of contractile damage, likely by inducing a shift in fiber type toward slow-twitch. Finally, we found that Wnt7a similarly induced myotube hypertrophy and a shift in fiber type toward slow-twitch in human primary myotubes. Taken together, our findings suggest that Wnt7a is a promising candidate for development as an ameliorative treatment for DMD.


Asunto(s)
Distrofia Muscular Animal/tratamiento farmacológico , Proteínas Wnt/uso terapéutico , Animales , Electroquimioterapia , Técnicas de Silenciamiento del Gen , Terapia Genética , Humanos , Factores de Transcripción MEF2 , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Contracción Muscular/fisiología , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patología , Distrofia Muscular Animal/fisiopatología , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Plásmidos/administración & dosificación , Plásmidos/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regeneración/fisiología , Transducción de Señal , Proteínas Wnt/genética , Proteínas Wnt/fisiología
16.
Stem Cells ; 31(6): 1107-20, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23495099

RESUMEN

In pluripotent stem cells, bivalent domains mark the promoters of developmentally regulated loci. Histones in these chromatin regions contain coincident epigenetic modifications of gene activation and repression. How these marks are transmitted to maintain the pluripotent state in daughter progeny remains poorly understood. Our study demonstrates that Oct4 post-translational modifications (PTMs) form a positive feedback loop, which promotes Akt activation and interaction with Hmgb2 and the SET complex. This preserves H3K27me3 modifications in daughter progeny and maintains the pluripotent gene expression signature in murine embryonic stem cells. However, if Oct4 is not phosphorylated, a negative feedback loop is formed that inactivates Akt and initiates the DNA damage response. Oct4 sumoylation then is required for G1/S progression and transmission of the repressive H3K27me3 mark. Therefore, PTMs regulate the ability of Oct4 to direct the spatio-temporal formation of activating and repressing complexes to orchestrate chromatin plasticity and pluripotency. Our work highlights a previously unappreciated role for Oct4 PTM-dependent interactions in maintaining restrained Akt signaling and promoting a primitive epigenetic state.


Asunto(s)
Proteína HMGB2/genética , Proteína HMGB2/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/fisiología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Células Cultivadas , Cromatina/genética , Cromatina/metabolismo , Daño del ADN/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/fisiología , Epigénesis Genética/genética , Fase G1/genética , Histonas/genética , Histonas/metabolismo , Ratones , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Procesamiento Proteico-Postraduccional/genética , Fase S/genética , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética/genética
17.
Stem Cells ; 31(4): 752-64, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23307624

RESUMEN

Activation of the canonical Wnt signaling pathway synergizes with leukemia inhibitory factor (LIF) to maintain pluripotency of mouse embryonic stem cells (mESCs). However, in the absence of LIF, Wnt signaling is unable to maintain ESCs in the undifferentiated state. To investigate the role of canonical Wnt signaling in pluripotency and lineage specification, we expressed Wnt3a in mESCs and characterized them in growth and differentiation. We found that activated canonical Wnt signaling induced the formation of a reversible metastable primitive endoderm state in mESC. Upon subsequent differentiation, Wnt3a-stimulated mESCs gave rise to large quantities of visceral endoderm. Furthermore, we determined that the ability of canonical Wnt signaling to induce a metastable primitive endoderm state was mediated by Tbx3. Our data demonstrates a specific role for canonical Wnt signaling in promoting pluripotency while at the same time priming cells for subsequent differentiation into the primitive endoderm lineage.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Endodermo/citología , Endodermo/metabolismo , Animales , Western Blotting , Línea Celular , Citometría de Flujo , Ratones , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Vía de Señalización Wnt/genética , Vía de Señalización Wnt/fisiología , Proteína Wnt3/genética , Proteína Wnt3/metabolismo
18.
Curr Opin Cell Biol ; 19(6): 628-33, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17996437

RESUMEN

Research focusing on the canonical adult myogenic progenitor, the skeletal muscle satellite cell, is still an ever-growing field 46 years from their initial description. Recent publications revealed numerous new aspects of satellite cell biology, starting from their developmental life to their role as the principal self-renewing myogenic stem cell in adult skeletal muscle and finally their loss during aging. The myogenic potential of satellite cells is under the molecular control of specific paired-box and bHLH transcription factors whose tightly orchestrated balance accounts for an effective skeletal muscle regeneration. New reports also demonstrate satellite cells relationships with blood vessels and the high myogenic potential of stem cell subsets related to both lineages.


Asunto(s)
Desarrollo de Músculos , Células Satélite del Músculo Esquelético/citología , Adulto , Diferenciación Celular , Linaje de la Célula , Humanos , Regeneración , Células Satélite del Músculo Esquelético/metabolismo
19.
Nature ; 454(7207): 961-7, 2008 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-18719582

RESUMEN

Brown fat can increase energy expenditure and protect against obesity through a specialized program of uncoupled respiration. Here we show by in vivo fate mapping that brown, but not white, fat cells arise from precursors that express Myf5, a gene previously thought to be expressed only in the myogenic lineage. We also demonstrate that the transcriptional regulator PRDM16 (PRD1-BF1-RIZ1 homologous domain containing 16) controls a bidirectional cell fate switch between skeletal myoblasts and brown fat cells. Loss of PRDM16 from brown fat precursors causes a loss of brown fat characteristics and promotes muscle differentiation. Conversely, ectopic expression of PRDM16 in myoblasts induces their differentiation into brown fat cells. PRDM16 stimulates brown adipogenesis by binding to PPAR-gamma (peroxisome-proliferator-activated receptor-gamma) and activating its transcriptional function. Finally, Prdm16-deficient brown fat displays an abnormal morphology, reduced thermogenic gene expression and elevated expression of muscle-specific genes. Taken together, these data indicate that PRDM16 specifies the brown fat lineage from a progenitor that expresses myoblast markers and is not involved in white adipogenesis.


Asunto(s)
Adipocitos Marrones/metabolismo , Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Músculo Esquelético/metabolismo , Factores de Transcripción/metabolismo , Adipocitos Marrones/citología , Adipocitos Blancos/metabolismo , Tejido Adiposo Pardo/citología , Animales , Células COS , Diferenciación Celular/genética , Línea Celular , Chlorocebus aethiops , Proteínas de Unión al ADN/genética , Masculino , Ratones , Desarrollo de Músculos/genética , Músculo Esquelético/citología , Músculo Esquelético/crecimiento & desarrollo , Factor 5 Regulador Miogénico/genética , PPAR gamma/genética , Factores de Transcripción/genética
20.
bioRxiv ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38405765

RESUMEN

We have recently made the strikingly discovery that upon a muscle injury, Wnt7a is upregulated and secreted from new regenerating myofibers on the surface of exosomes to elicit its myogenerative response distally. Despite recent advances in extracellular vesicle (EVs) isolation from diverse tissues, there is still a lack of specific methodology to purify EVs from muscle tissue. To eliminate contamination with non-EV secreted proteins and cytoplasmic fragments, which are typically found when using classical methodology, such as ultracentrifugation, we adapted a protocol combining Tangential Flow Filtration (TFF) and Size Exclusion Chromatography (SEC). We found that this approach allows simultaneous purification of Wnt7a, bound to EVs (retentate fraction) and free non-EV Wnt7a (permeate fraction). Here we described this optimized protocol designed to specifically isolate EVs from hind limb muscle explants, without cross-contamination with other sources of non-EV bounded proteins. The first step of the protocol is to remove large EVs with sequential centrifugation. Extracellular vesicles are then concentrated and washed in exchange buffer by TFF. Lastly, SEC is performed to remove any soluble protein traces remaining after TFF. Overall, this procedure can be used to isolate EVs from conditioned media or biofluid that contains EVs derived from any cell type or tissue, improving reproducibility, efficiency, and purity of EVs preparations. Our purification protocol results in high purity EVs that maintain structural integrity and thus fully compatible with in vitro and in vivo bioactivity and analytic assays.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA