Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Lung Cell Mol Physiol ; 327(3): L327-L340, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38772903

RESUMEN

Repair and regeneration of a diseased lung using stem cells or bioengineered tissues is an exciting therapeutic approach for a variety of lung diseases and critical illnesses. Over the past decade, increasing evidence from preclinical models suggests that mesenchymal stromal cells, which are not normally resident in the lung, can be used to modulate immune responses after injury, but there have been challenges in translating these promising findings to the clinic. In parallel, there has been a surge in bioengineering studies investigating the use of artificial and acellular lung matrices as scaffolds for three-dimensional lung or airway regeneration, with some recent attempts of transplantation in large animal models. The combination of these studies with those involving stem cells, induced pluripotent stem cell derivatives, and/or cell therapies is a promising and rapidly developing research area. These studies have been further paralleled by significant increases in our understanding of the molecular and cellular events by which endogenous lung stem and/or progenitor cells arise during lung development and participate in normal and pathological remodeling after lung injury. For the 2023 Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases Conference, scientific symposia were chosen to reflect the most cutting-edge advances in these fields. Sessions focused on the integration of "omics" technologies with function, the influence of immune cells on regeneration, and the role of the extracellular matrix in regeneration. The necessity for basic science studies to enhance fundamental understanding of lung regeneration and to design innovative translational studies was reinforced throughout the conference.


Asunto(s)
Bioingeniería , Enfermedades Pulmonares , Pulmón , Humanos , Enfermedades Pulmonares/terapia , Enfermedades Pulmonares/patología , Pulmón/patología , Animales , Bioingeniería/métodos , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Células Madre/citología , Ingeniería de Tejidos/métodos , Regeneración/fisiología , Trasplante de Células Madre/métodos
2.
Brain Behav Immun ; 121: 280-290, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39032543

RESUMEN

Converging data show that exposure to maternal immune activation (MIA) in utero alters brain development in animals and increases the risk of neurodevelopmental disorders in humans. A recently developed non-human primate MIA model affords opportunities for studies with uniquely strong translational relevance to human neurodevelopment. The current longitudinal study used 1H-MRS to investigate the developmental trajectory of prefrontal cortex metabolites in male rhesus monkey offspring of dams (n = 14) exposed to a modified form of the inflammatory viral mimic, polyinosinic:polycytidylic acid (Poly IC), in the late first trimester. Brain metabolites in these animals were compared to offspring of dams that received saline (n = 10) or no injection (n = 4). N-acetylaspartate (NAA), glutamate, creatine, choline, myo-inositol, taurine, and glutathione were estimated from PRESS and MEGA-PRESS acquisitions obtained at 6, 12, 24, 36, and 45 months of age. Prior investigations of this cohort reported reduced frontal cortical gray and white matter and subtle cognitive impairments in MIA offspring. We hypothesized that the MIA-induced neurodevelopmental changes would extend to abnormal brain metabolite levels, which would be associated with the observed cognitive impairments. Prefrontal NAA was significantly higher in the MIA offspring across all ages (p < 0.001) and was associated with better performance on the two cognitive measures most sensitive to impairment in the MIA animals (both p < 0.05). Myo-inositol was significantly lower across all ages in MIA offspring but was not associated with cognitive performance. Taurine was elevated in MIA offspring at 36 and 45 months. Glutathione did not differ between groups. MIA exposure in male non-human primates is associated with altered prefrontal cortex metabolites during childhood and adolescence. A positive association between elevated NAA and cognitive performance suggests the hypothesis that elevated NAA throughout these developmental stages reflects a protective or resilience-related process in MIA-exposed offspring. The potential relevance of these findings to human neurodevelopmental disorders is discussed.


Asunto(s)
Encéfalo , Macaca mulatta , Poli I-C , Corteza Prefrontal , Efectos Tardíos de la Exposición Prenatal , Animales , Masculino , Femenino , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/inmunología , Embarazo , Encéfalo/metabolismo , Poli I-C/farmacología , Corteza Prefrontal/metabolismo , Inositol/metabolismo , Ácido Aspártico/metabolismo , Ácido Aspártico/análogos & derivados , Creatina/metabolismo , Taurina/metabolismo , Colina/metabolismo , Modelos Animales de Enfermedad , Ácido Glutámico/metabolismo , Glutatión/metabolismo , Estudios Longitudinales
3.
Mol Psychiatry ; 28(10): 4185-4194, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37582858

RESUMEN

Maternal infection has emerged as an important environmental risk factor for neurodevelopmental disorders, including schizophrenia and autism spectrum disorders. Animal model systems of maternal immune activation (MIA) suggest that the maternal immune response plays a significant role in the offspring's neurodevelopment and behavioral outcomes. Extracellular free water is a measure of freely diffusing water in the brain that may be associated with neuroinflammation and impacted by MIA. The present study evaluates the brain diffusion characteristics of male rhesus monkeys (Macaca mulatta) born to MIA-exposed dams (n = 14) treated with a modified form of the viral mimic polyinosinic:polycytidylic acid at the end of the first trimester. Control dams received saline injections at the end of the first trimester (n = 10) or were untreated (n = 4). Offspring underwent diffusion MRI scans at 6, 12, 24, 36, and 45 months. Offspring born to MIA-exposed dams showed significantly increased extracellular free water in cingulate cortex gray matter starting as early as 6 months of age and persisting through 45 months. In addition, offspring gray matter free water in this region was significantly correlated with the magnitude of the maternal IL-6 response in the MIA-exposed dams. Significant correlations between brain volume and extracellular free water in the MIA-exposed offspring also indicate converging, multimodal evidence of the impact of MIA on brain development. These findings provide strong evidence for the construct validity of the nonhuman primate MIA model as a system of relevance for investigating the pathophysiology of human neurodevelopmental psychiatric disorders. Elevated free water in individuals exposed to immune activation in utero could represent an early marker of a perturbed or vulnerable neurodevelopmental trajectory.


Asunto(s)
Efectos Tardíos de la Exposición Prenatal , Esquizofrenia , Femenino , Animales , Humanos , Masculino , Citocinas , Encéfalo , Modelos Animales de Enfermedad , Primates , Conducta Animal/fisiología
4.
Adv Exp Med Biol ; 1413: 73-106, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37195527

RESUMEN

The airway epithelium provides a physical and biochemical barrier playing a key role in protecting the lung from infiltration of pathogens and irritants and is, therefore, crucial in maintaining tissue homeostasis and regulating innate immunity. Due to continual inspiration and expiration of air during breathing, the epithelium is exposed to a plethora of environmental insults. When severe or persistent, these insults lead to inflammation and infection. The effectiveness of the epithelium as a barrier is reliant upon its capacity for mucociliary clearance, immune surveillance, and regeneration upon injury. These functions are accomplished by the cells that comprise the airway epithelium and the niche in which they reside. Engineering of new physiological and pathological models of the proximal airways requires the generation of complex structures comprising the surface airway epithelium, submucosal gland epithelium, extracellular matrix, and niche cells, including smooth muscle cells, fibroblasts, and immune cells. This chapter focuses on the structure-function relationships in the airways and the challenges of developing complex engineered models of the human airway.


Asunto(s)
Inflamación , Pulmón , Humanos , Inflamación/patología , Epitelio/patología , Inmunidad Innata
5.
Health Promot Pract ; 24(6): 1151-1162, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36050932

RESUMEN

Movements designed to engage youth in tobacco control have been an important part of tobacco prevention for decades. Today, young people are increasingly diverse, and their primary issues of concern are gun control, racism, mental health, and climate change. To engage today's young people, tobacco control programs need to draw connections between youth's identities, top issues, and tobacco. UpRISE is a social justice youth tobacco control movement that engages diverse youth in identifying the root causes of youth nicotine use. In 2018-2019, 21 youth-serving organizations and schools hosted youth coalitions. Coalitions engaged in a six-session workbook called "Getting to the root cause," and adults were provided training and reflective supervision. Pre/post surveys with youth participants (n = 180) and end-of-year interviews with adult facilitators (n = 22) were used to assess outcomes. The primary outcomes were supportive adult relationships, youth voice in decision-making, anti-tobacco industry attitudes and beliefs, psychological empowerment, critical consciousness, and global belief in a just world. Quantitative measures of supportive adult relationships, youth voice in decision-making, psychological empowerment, and anti-tobacco industry attitudes and beliefs all increased significantly over time (p < .0001, p < .0001, p < .0001, p = .0034, respectively). Critical consciousness and global belief in a just world did not change significantly. During interviews, adults reported learning how: to engage in youth-adult partnerships, the tobacco industry abused its power, to engage in critical reflection about power. Adults also felt empowered. UpRISE may be a promising approach to increase racially diverse youth's engagement in social justice-oriented tobacco control efforts that advance equity.


Asunto(s)
Empoderamiento , Control del Tabaco , Adulto , Humanos , Adolescente , Nicotiana , Instituciones Académicas , Justicia Social
6.
J Neurosci ; 41(48): 9971-9987, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34607967

RESUMEN

Human epidemiological studies implicate exposure to infection during gestation in the etiology of neurodevelopmental disorders. Animal models of maternal immune activation (MIA) have identified the maternal immune response as the critical link between maternal infection and aberrant offspring brain and behavior development. Here we evaluate neurodevelopment of male rhesus monkeys (Macaca mulatta) born to MIA-treated dams (n = 14) injected with a modified form of the viral mimic polyinosinic:polycytidylic acid at the end of the first trimester. Control dams received saline injections at the same gestational time points (n = 10) or were untreated (n = 4). MIA-treated dams exhibited a strong immune response as indexed by transient increases in sickness behavior, temperature, and inflammatory cytokines. Although offspring born to control or MIA-treated dams did not differ on measures of physical growth and early developmental milestones, the MIA-treated animals exhibited subtle changes in cognitive development and deviated from species-typical brain growth trajectories. Longitudinal MRI revealed significant gray matter volume reductions in the prefrontal and frontal cortices of MIA-treated offspring at 6 months that persisted through the final time point at 45 months along with smaller frontal white matter volumes in MIA-treated animals at 36 and 45 months. These findings provide the first evidence of early postnatal changes in brain development in MIA-exposed nonhuman primates and establish a translationally relevant model system to explore the neurodevelopmental trajectory of risk associated with prenatal immune challenge from birth through late adolescence.SIGNIFICANCE STATEMENT Women exposed to infection during pregnancy have an increased risk of giving birth to a child who will later be diagnosed with a neurodevelopmental disorder. Preclinical maternal immune activation (MIA) models have demonstrated that the effects of maternal infection on fetal brain development are mediated by maternal immune response. Since the majority of MIA models are conducted in rodents, the nonhuman primate provides a unique system to evaluate the MIA hypothesis in a species closely related to humans. Here we report the first longitudinal study conducted in a nonhuman primate MIA model. MIA-exposed offspring demonstrate subtle changes in cognitive development paired with marked reductions in frontal gray and white matter, further supporting the association between prenatal immune challenge and alterations in offspring neurodevelopment.


Asunto(s)
Encéfalo/patología , Modelos Animales de Enfermedad , Trastornos del Neurodesarrollo/etiología , Complicaciones Infecciosas del Embarazo , Efectos Tardíos de la Exposición Prenatal/patología , Animales , Femenino , Inductores de Interferón/toxicidad , Macaca mulatta , Masculino , Trastornos del Neurodesarrollo/patología , Neurogénesis/fisiología , Poli I-C/toxicidad , Embarazo , Complicaciones Infecciosas del Embarazo/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/inducido químicamente
7.
Biochemistry ; 61(23): 2687-2697, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36346979

RESUMEN

Signal transduction pathways are responsible for maintaining cellular functions, including proliferation, differentiation, apoptosis, and cell cycle progression. These pathways are maintained through the propagation of phosphorylation signals by protein kinases, as well as the removal of phosphorylation signals by protein phosphatases. Depending on the context, post-translational modification could have either a positive or negative effect on a signaling pathway. Intricate networks of positive and negative regulators offer a challenging target for the dissection of cell signaling mechanisms, particularly regarding the more subtle dampening of signal transduction through phosphatases. We report the development of two complimentary methods for the optical control of a complex phosphatase: SH2 domain-containing protein tyrosine phosphatase-2 (SHP2). We investigated controlling the catalytic function of SHP2 through (1) site-specific incorporation of a caged tyrosine for light activation of catalytic activity for the control of an essential substrate binding residue and (2) site-specific incorporation of a caged lysine at a conserved residue within an allosteric pocket for the control of SHP2 binding partner docking sites. These methods are generalizable to proteins bearing either a protein tyrosine phosphatase (PTP) catalytic domain or an SH2 domain, including SHP1, PTP family phosphatases, and a diverse range of SH2 domain-containing proteins.


Asunto(s)
Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Dominios Homologos src , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteínas Tirosina Fosfatasas con Dominio SH2 , Transducción de Señal , Fosforilación
8.
Am J Physiol Lung Cell Mol Physiol ; 323(3): L341-L354, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35762622

RESUMEN

The 9th biennial conference titled "Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases" was hosted virtually, due to the ongoing COVID-19 pandemic, in collaboration with the University of Vermont Larner College of Medicine, the National Heart, Lung, and Blood Institute, the Alpha-1 Foundation, the Cystic Fibrosis Foundation, and the International Society for Cell & Gene Therapy. The event was held from July 12th through 15th, 2021 with a pre-conference workshop held on July 9th. As in previous years, the objectives remained to review and discuss the status of active research areas involving stem cells (SCs), cellular therapeutics, and bioengineering as they relate to the human lung. Topics included 1) technological advancements in the in situ analysis of lung tissues, 2) new insights into stem cell signaling and plasticity in lung remodeling and regeneration, 3) the impact of extracellular matrix in stem cell regulation and airway engineering in lung regeneration, 4) differentiating and delivering stem cell therapeutics to the lung, 5) regeneration in response to viral infection, and 6) ethical development of cell-based treatments for lung diseases. This selection of topics represents some of the most dynamic and current research areas in lung biology. The virtual workshop included active discussion on state-of-the-art methods relating to the core features of the 2021 conference, including in situ proteomics, lung-on-chip, induced pluripotent stem cell (iPSC)-airway differentiation, and light sheet microscopy. The conference concluded with an open discussion to suggest funding priorities and recommendations for future research directions in basic and translational lung biology.


Asunto(s)
COVID-19 , Células Madre Pluripotentes Inducidas , Bioingeniería , Biología , COVID-19/terapia , Humanos , Pulmón , Pandemias
9.
Bioconjug Chem ; 33(12): 2361-2369, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36459098

RESUMEN

Despite a range of covalent protein modifications, few techniques exist for quantification of protein bioconjugation in cells. Here, we describe a novel method for quantifying in cellulo protein bioconjugation through covalent bond formation with HaloTag. This approach utilizes unnatural amino acid (UAA) mutagenesis to selectively install a small and bioorthogonally reactive handle onto the surface of a protein. We utilized the fast kinetics and high selectivity of inverse electron-demand Diels-Alder cycloadditions to evaluate reactions of tetrazine phenylalanine (TetF) with strained trans-cyclooctene-chloroalkane (sTCO-CA) and trans-cyclooctene lysine (TCOK) with tetrazine-chloroalkane (Tet-CA). Following bioconjugation, the chloroalkane ligand is exposed for labeling by the HaloTag enzyme, allowing for straightforward quantification of bioconjugation via simple western blot analysis. We demonstrate the versatility of this tool for quickly and accurately determining the bioconjugation efficiency of different UAA/chloroalkane pairs and for different sites on different proteins of interest, including EGFP and the estrogen-related receptor ERRα.


Asunto(s)
Compuestos Heterocíclicos , Proteínas , Animales , Proteínas/química , Aminoácidos/química , Fenilalanina , Ciclooctanos/química , Reacción de Cicloadición , Mamíferos/metabolismo
10.
Am J Respir Cell Mol Biol ; 65(1): 22-29, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33625958

RESUMEN

The National Heart, Lung, and Blood Institute of the National Institutes of Health, together with the Longfonds BREATH consortium, convened a working group to review the field of lung regeneration and suggest avenues for future research. The meeting took place on May 22, 2019, at the American Thoracic Society 2019 conference in Dallas, Texas, United States, and brought together investigators studying lung development, adult stem-cell biology, induced pluripotent stem cells, biomaterials, and respiratory disease. The purpose of the working group was 1) to examine the present status of basic science approaches to tackling lung disease and promoting lung regeneration in patients and 2) to determine priorities for future research in the field.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedades Pulmonares , Pulmón/fisiología , Regeneración , Mucosa Respiratoria/fisiología , Animales , Tratamiento Basado en Trasplante de Células y Tejidos , Congresos como Asunto , Educación , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/trasplante , Enfermedades Pulmonares/metabolismo , Enfermedades Pulmonares/terapia , National Heart, Lung, and Blood Institute (U.S.) , Estados Unidos
11.
J Am Chem Soc ; 143(24): 9222-9229, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34121391

RESUMEN

Development of methodologies for optically triggered protein degradation enables the study of dynamic protein functions, such as those involved in cell signaling, that are difficult to be probed with traditional genetic techniques. Here, we describe the design and implementation of a novel light-controlled peptide degron conferring N-end pathway degradation to its protein target. The degron comprises a photocaged N-terminal amino acid and a lysine-rich, 13-residue linker. By caging the N-terminal residue, we were able to optically control N-degron recognition by an E3 ligase, consequently controlling ubiquitination and proteasomal degradation of the target protein. We demonstrate broad applicability by applying this approach to a diverse set of target proteins, including EGFP, firefly luciferase, the kinase MEK1, and the phosphatase DUSP6 (also known as MKP3). The caged degron can be used with minimal protein engineering and provides virtually complete, light-triggered protein degradation on a second to minute time scale.


Asunto(s)
Fosfatasa 6 de Especificidad Dual/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Luciferasas de Luciérnaga/metabolismo , MAP Quinasa Quinasa 1/metabolismo , Péptidos/metabolismo , Animales , Fosfatasa 6 de Especificidad Dual/química , Luciérnagas , Proteínas Fluorescentes Verdes/química , Humanos , Luciferasas de Luciérnaga/química , MAP Quinasa Quinasa 1/química , Péptidos/química , Conformación Proteica , Ingeniería de Proteínas
12.
Int J Mol Sci ; 23(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35008713

RESUMEN

Fetal alcohol spectrum disorders are caused by the disruption of normal brain development in utero. The severity and range of symptoms is dictated by both the dosage and timing of ethanol administration, and the resulting developmental processes that are impacted. In order to investigate the effects of an acute, high-dose intoxication event on the development of medium spiny neurons (MSNs) in the striatum, mice were injected with ethanol on P6, and neuronal morphology was assessed after 24 h, or at 1 month or 5 months of age. Data indicate an immediate increase in MSN dendritic length and branching, a rapid decrease in spine number, and increased levels of the synaptic protein PSD-95 as a consequence of this neonatal exposure to ethanol, but these differences do not persist into adulthood. These results demonstrate a rapid neuronal response to ethanol exposure and characterize the dynamic nature of neuronal architecture in the MSNs. Although differences in neuronal branching and spine density induced by ethanol resolve with time, early changes in the caudate/putamen region have a potential impact on the execution of complex motor skills, as well as aspects of long-term learning and addictive behavior.


Asunto(s)
Cuerpo Estriado/patología , Etanol/toxicidad , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Neuronas/patología , Sinapsis/metabolismo , Animales , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/metabolismo , Etanol/administración & dosificación , Femenino , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/metabolismo , Ratones Endogámicos C57BL , Neurogénesis/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Sinapsis/efectos de los fármacos
13.
Behav Res Methods ; 53(3): 1003-1030, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32935327

RESUMEN

Over the past 50 years there has been a strong interest in applying eye-tracking techniques to study a myriad of questions related to human and nonhuman primate psychological processes. Eye movements and fixations can provide qualitative and quantitative insights into cognitive processes of nonverbal populations such as nonhuman primates, clarifying the evolutionary, physiological, and representational underpinnings of human cognition. While early attempts at nonhuman primate eye tracking were relatively crude, later, more sophisticated and sensitive techniques required invasive protocols and the use of restraint. In the past decade, technology has advanced to a point where noninvasive eye-tracking techniques, developed for use with human participants, can be applied for use with nonhuman primates in a restraint-free manner. Here we review the corpus of recent studies (N=32) that take such an approach. Despite the growing interest in eye-tracking research, there is still little consensus on "best practices," both in terms of deploying test protocols or reporting methods and results. Therefore, we look to advances made in the field of developmental psychology, as well as our own collective experiences using eye trackers with nonhuman primates, to highlight key elements that researchers should consider when designing noninvasive restraint-free eye-tracking research protocols for use with nonhuman primates. Beyond promoting best practices for research protocols, we also outline an ideal approach for reporting such research and highlight future directions for the field.


Asunto(s)
Cognición , Tecnología de Seguimiento Ocular , Animales , Movimientos Oculares , Humanos , Primates
14.
Am J Physiol Cell Physiol ; 319(4): C675-C693, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32783658

RESUMEN

The ability to replace defective cells in an airway with cells that can engraft, integrate, and restore a functional epithelium could potentially cure a number of lung diseases. Progress toward the development of strategies to regenerate the adult lung by either in vivo or ex vivo targeting of endogenous stem cells or pluripotent stem cell derivatives is limited by our fundamental lack of understanding of the mechanisms controlling human lung development, the precise identity and function of human lung stem and progenitor cell types, and the genetic and epigenetic control of human lung fate. In this review, we intend to discuss the known stem/progenitor cell populations, their relative differences between rodents and humans, their roles in chronic lung disease, and their therapeutic prospects. Additionally, we highlight the recent breakthroughs that have increased our understanding of these cell types. These advancements include novel lineage-traced animal models and single-cell RNA sequencing of human airway cells, which have provided critical information on the stem cell subtypes, transition states, identifying cell markers, and intricate pathways that commit a stem cell to differentiate or to maintain plasticity. As our capacity to model the human lung evolves, so will our understanding of lung regeneration and our ability to target endogenous stem cells as a therapeutic approach for lung disease.


Asunto(s)
Enfermedades Pulmonares/terapia , Pulmón/crecimiento & desarrollo , Células Madre Pluripotentes/trasplante , Regeneración/genética , Diferenciación Celular/genética , Epitelio/crecimiento & desarrollo , Humanos , Pulmón/patología , Enfermedades Pulmonares/genética , Enfermedades Pulmonares/patología
15.
Am J Physiol Lung Cell Mol Physiol ; 318(4): L671-L683, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32073882

RESUMEN

Ferrets are an attractive mammalian model for several diseases, especially those affecting the lungs, liver, brain, and kidneys. Many chronic human diseases have been difficult to model in rodents due to differences in size and cellular anatomy. This is particularly the case for the lung, where ferrets provide an attractive mammalian model of both acute and chronic lung diseases, such as influenza, cystic fibrosis, A1A emphysema, and obliterative bronchiolitis, closely recapitulating disease pathogenesis, as it occurs in humans. As such, ferrets have the potential to be a valuable preclinical model for the evaluation of cell-based therapies for lung regeneration and, likely, for other tissues. Induced pluripotent stem cells (iPSCs) provide a great option for provision of enough autologous cells to make patient-specific cell therapies a reality. Unfortunately, they have not been successfully created from ferrets. In this study, we demonstrate the generation of ferret iPSCs that reflect the primed pluripotent state of human iPSCs. Ferret fetal fibroblasts were reprogrammed and acquired core features of pluripotency, having the capacity for self-renewal, multilineage differentiation, and a high-level expression of the core pluripotency genes and pathways at both the transcriptional and protein level. In conclusion, we have generated ferret pluripotent stem cells that provide an opportunity for advancing our capacity to evaluate autologous cell engraftment in ferrets.


Asunto(s)
Hurones/fisiología , Células Madre Pluripotentes Inducidas/citología , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Reprogramación Celular/fisiología , Femenino , Fibroblastos/citología , Humanos , Masculino
16.
Dev Psychobiol ; 62(7): 950-962, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32666534

RESUMEN

The nonhuman primate provides a sophisticated animal model system both to explore neurobiological mechanisms underlying complex behaviors and to facilitate preclinical research for neurodevelopmental and neuropsychiatric disease. A better understanding of evolutionarily conserved behaviors and brain processes between humans and nonhuman primates will be needed to successfully apply recently released NIMH guidelines (NOT-MH-19-053) for conducting rigorous nonhuman primate neurobehavioral research. Here, we explore the relationship between two measures of social behavior that can be used in both humans and nonhuman primates-traditional observations of social interactions with conspecifics and eye gaze detection in response to social stimuli. Infant male rhesus macaques (Macaca mulatta) serving as controls (N = 14) for an ongoing study were observed in their social rearing groups and participated in a noninvasive, longitudinal eye-tracking study. We found significant positive relationships between time spent viewing eyes of faces in an eye tracker and number of initiations made for social interactions with peers that is consistent with similar observations in human populations. Although future studies are needed to determine if this relationship represents species-typical social developmental processes, these preliminary results provide a novel framework to explore the relationship between social interactions and social attention in nonhuman primate models for neurobehavioral development.


Asunto(s)
Animales Recién Nacidos/psicología , Medidas del Movimiento Ocular/veterinaria , Macaca mulatta/psicología , Conducta Social , Animales , Animales Recién Nacidos/crecimiento & desarrollo , Movimientos Oculares , Macaca mulatta/crecimiento & desarrollo , Masculino
17.
Am J Respir Cell Mol Biol ; 61(4): 429-439, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31573338

RESUMEN

The University of Vermont Larner College of Medicine, in collaboration with the National Heart, Lung, and Blood Institute (NHLBI), the Alpha-1 Foundation, the American Thoracic Society, the Cystic Fibrosis Foundation, the European Respiratory Society, the International Society for Cell & Gene Therapy, and the Pulmonary Fibrosis Foundation, convened a workshop titled "Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases" from July 24 through 27, 2017, at the University of Vermont, Burlington, Vermont. The conference objectives were to review and discuss current understanding of the following topics: 1) stem and progenitor cell biology and the role that they play in endogenous repair or as cell therapies after lung injury, 2) the emerging role of extracellular vesicles as potential therapies, 3) ex vivo bioengineering of lung and airway tissue, and 4) progress in induced pluripotent stem cell protocols for deriving lung cell types and applications in disease modeling. All of these topics are research areas in which significant and exciting progress has been made over the past few years. In addition, issues surrounding the ethics and regulation of cell therapies worldwide were discussed, with a special emphasis on combating the growing problem of unproven cell interventions being administered to patients with lung diseases. Finally, future research directions were discussed, and opportunities for both basic and translational research were identified.


Asunto(s)
Bioingeniería , Tratamiento Basado en Trasplante de Células y Tejidos , Enfermedades Pulmonares/terapia , Células Madre , Bioingeniería/tendencias , Tratamiento Basado en Trasplante de Células y Tejidos/ética , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Tratamiento Basado en Trasplante de Células y Tejidos/tendencias , Ensayos Clínicos como Asunto , Vesículas Extracelulares/trasplante , Predicción , Prioridades en Salud , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/trasplante , Colaboración Intersectorial , Pulmón/citología , Investigación , Pequeña Empresa , Nicho de Células Madre , Ingeniería de Tejidos/métodos , Ingeniería de Tejidos/tendencias , Investigación Biomédica Traslacional/tendencias
18.
Zoo Biol ; 35(2): 137-46, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26828857

RESUMEN

The formation and modification of social groups in captivity are delicate management tasks. The ability for personnel to anticipate changes in group dynamics following compositional changes can increase the likelihood of successful management with minimized injury or social instability. Hamadryas baboons (Papio hamadryas hamadryas) have a distinctive multi-level social system comprising of one-male units (OMUs) that can make it difficult to apply knowledge from other primates' multi-female/multi-male social structure to changes imposed onto captive hamadryas baboon groups. We conducted an observational study of the behavioral impacts following the introduction of two females into the group of hamadryas baboons at the Wildlife Conservation Society's Prospect Park Zoo in NY to test hypotheses about the relationships between changes in group composition and social and feeding behavior. Generalized linear mixed models demonstrated that social interactions significantly increased following the compositional changes, even in groups that only experienced member removals. The increase in affiliative social behavior observed suggests that during times of social stress or uncertainty, hamadryas baboons may employ social behavior as a tension-reducing mechanism to negotiate relationships as opposed to using aggression to engage in competitions for ranks and resources. The observed response to compositional changes implies that hamadryas baboons may respond with less aggression than do other Old World monkey species and that levels of affiliative behavior may be a more accurate metric for evaluating introduction success in hamadryas baboons.


Asunto(s)
Animales de Zoológico/fisiología , Conducta Alimentaria/fisiología , Papio hamadryas/fisiología , Conducta Social , Animales , Animales de Zoológico/psicología , Femenino , Modelos Lineales , Masculino , Papio hamadryas/psicología , Dinámica Poblacional , Estrés Psicológico
20.
Heliyon ; 10(1): e23320, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38163173

RESUMEN

SARS-CoV-2 infection remains a major public health concern, particularly for the aged and those individuals with co-morbidities at risk for developing severe COVID-19. Understanding the pathogenesis and biomarkers associated with responses to SARS-CoV-2 infection remain critical components in developing effective therapeutic approaches, especially in cases of severe and long-COVID-19. In this study blood plasma protein expression was compared in subjects with mild, moderate, and severe COVID-19 disease. Evaluation of an inflammatory protein panel confirms upregulation of proteins including TNFß, IL-6, IL-8, IL-12, already associated with severe cytokine storm and progression to severe COVID-19. Importantly, we identify several proteins not yet associated with COVID-19 disease, including mesothelin (MSLN), that are expressed at significantly higher levels in severe COVID-19 subjects. In addition, we find a subset of markers associated with T-cell and dendritic cell responses to viral infection that are significantly higher in mild cases and decrease in expression as severity of COVID-19 increases, suggesting that an immediate and effective activation of T-cells is critical in modulating disease progression. Together, our findings identify new targets for further investigation as therapeutic approaches for the treatment of SARS-CoV-2 infection and prevention of complications of severe COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA