Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biophys J ; 120(3): 568-575, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33347887

RESUMEN

We investigated the temperature-dependent kinetics of the light-driven Na+ pump Krokinobacter rhodopsin 2 (KR2) at Na+-pumping conditions. The recorded microsecond flash photolysis data were subjected to detailed global target analysis, employing Eyring constraints and spectral decomposition. The analysis resulted in the kinetic rates, the composition of the different photocycle equilibria, and the spectra of the involved photointermediates. Our results show that with the temperature increase (from 10 to 40°C), the overall photocycle duration is accelerated by a factor of 6, with the L-to-M transition exhibiting an impressive 40-fold increase. It follows from the analysis that in KR2 the chromophore and the protein scaffold are more kinetically decoupled than in other microbial rhodopsins. We link this effect to the rigidity of the retinal protein environment. This kinetic decoupling should be considered in future studies and could potentially be exploited for fine-tuning biotechnological applications.


Asunto(s)
Flavobacteriaceae , Rodopsina , Cinética , Luz , Rodopsinas Microbianas , Temperatura
2.
Biophys J ; 113(6): 1331-1341, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28450130

RESUMEN

Nanodiscs that hold a lipid bilayer surrounded by a boundary of scaffold proteins have emerged as a powerful tool for membrane protein solubilization and analysis. By combining nanodiscs and cell-free expression technologies, even completely detergent-free membrane protein characterization protocols can be designed. Nanodiscs are compatible with various techniques, and due to their bilayer environment and increased stability, they are often superior to detergent micelles or liposomes for membrane protein solubilization. However, transport assays in nanodiscs have not been conducted so far, due to limitations of the two-dimensional nature of nanodisc membranes that offers no compartmentalization. Here, we study Krokinobacter eikastus rhodopsin-2 (KR2), a microbial light-driven sodium or proton pump, with noncovalent mass-spectrometric, electrophysiological, and flash photolysis measurements after its cotranslational insertion into nanodiscs. We demonstrate the feasibility of adsorbing nanodiscs containing KR2 to an artificial bilayer. This allows us to record light-induced capacitive currents that reflect KR2's ion transport activity. The solid-supported membrane assay with nanodisc samples provides reliable control over the ionic condition and information of the relative ion activity of this promiscuous pump. Our strategy is complemented with flash photolysis data, where the lifetimes of different photointermediates were determined at different ionic conditions. The advantage of using identical samples to three complementary approaches allows for a comprehensive comparability. The cell-free synthesis in combination with nanodiscs provides a defined hydrophobic lipid environment minimizing the detergent dependence often seen in assays with membrane proteins. KR2 is a promising tool for optogenetics, thus directed engineering to modify ion selectivity can be highly beneficial. Our approach, using the fast generation of functional ion pumps incorporated into nanodiscs and their subsequent analysis by several biophysical techniques, can serve as a versatile screening and engineering platform. This may open new avenues for the study of ion pumps and similar electrogenic targets.


Asunto(s)
Membranas Artificiales , Imagen Óptica , Rodopsinas Microbianas/química , Cromatografía en Gel , Escherichia coli , Estudios de Factibilidad , Flavobacteriaceae , Transporte Iónico , Espectrometría de Masas , Potenciales de la Membrana , Nanoestructuras , Optogenética , Fotólisis , Rodopsinas Microbianas/aislamiento & purificación
3.
Nat Commun ; 15(1): 4173, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755204

RESUMEN

Potassium channels of the Two-Pore Domain (K2P) subfamily, KCNK1-KCNK18, play crucial roles in controlling the electrical activity of many different cell types and represent attractive therapeutic targets. However, the identification of highly selective small molecule drugs against these channels has been challenging due to the high degree of structural and functional conservation that exists not only between K2P channels, but across the whole K+ channel superfamily. To address the issue of selectivity, here we generate camelid antibody fragments (nanobodies) against the TREK-2 (KCNK10) K2P K+ channel and identify selective binders including several that directly modulate channel activity. X-ray crystallography and CryoEM data of these nanobodies in complex with TREK-2 also reveal insights into their mechanisms of activation and inhibition via binding to the extracellular loops and Cap domain, as well as their suitability for immunodetection. These structures facilitate design of a biparatropic inhibitory nanobody with markedly improved sensitivity. Together, these results provide important insights into TREK channel gating and provide an alternative, more selective approach to modulation of K2P channel activity via their extracellular domains.


Asunto(s)
Canales de Potasio de Dominio Poro en Tándem , Anticuerpos de Dominio Único , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Anticuerpos de Dominio Único/metabolismo , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/química , Humanos , Cristalografía por Rayos X , Animales , Microscopía por Crioelectrón , Células HEK293 , Modelos Moleculares
4.
Nat Genet ; 54(10): 1534-1543, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36195757

RESUMEN

Sleep apnea is a common disorder that represents a global public health burden. KCNK3 encodes TASK-1, a K+ channel implicated in the control of breathing, but its link with sleep apnea remains poorly understood. Here we describe a new developmental disorder with associated sleep apnea (developmental delay with sleep apnea, or DDSA) caused by rare de novo gain-of-function mutations in KCNK3. The mutations cluster around the 'X-gate', a gating motif that controls channel opening, and produce overactive channels that no longer respond to inhibition by G-protein-coupled receptor pathways. However, despite their defective X-gating, these mutant channels can still be inhibited by a range of known TASK channel inhibitors. These results not only highlight an important new role for TASK-1 K+ channels and their link with sleep apnea but also identify possible therapeutic strategies.


Asunto(s)
Mutación con Ganancia de Función , Síndromes de la Apnea del Sueño , Niño , Discapacidades del Desarrollo , Humanos , Mutación/genética , Proteínas del Tejido Nervioso , Canales de Potasio de Dominio Poro en Tándem , Síndromes de la Apnea del Sueño/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA