Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Physiol ; 602(16): 3995-4025, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39037943

RESUMEN

The hair bundle of cochlear hair cells comprises specialized microvilli, the stereocilia, which fulfil the role of mechanotransduction. Genetic defects and environmental noise challenge the maintenance of hair bundle structure, critically contributing to age-related hearing loss. Stereocilia fusion is a major component of the hair bundle pathology in mature hair cells, but its role in hearing loss and its molecular basis are poorly understood. Here, we utilized super-resolution expansion microscopy to examine the molecular anatomy of outer hair cell stereocilia fusion in mouse models of age-related hearing loss, heightened endoplasmic reticulum stress and prolonged noise exposure. Prominent stereocilia fusion in our model of heightened endoplasmic reticulum stress, Manf (Mesencephalic astrocyte-derived neurotrophic factor)-inactivated mice in a background with Cadherin 23 missense mutation, impaired mechanotransduction and calcium balance in stereocilia. This was indicated by reduced FM1-43 dye uptake through the mechanotransduction channels, reduced neuroplastin/PMCA2 expression and increased expression of the calcium buffer oncomodulin inside stereocilia. Sparse BAIAP2L2 and myosin 7a expression was retained in the fused stereocilia but mislocalized away from their functional sites at the tips. These hair bundle abnormalities preceded cell soma degeneration, suggesting a sequela from stereociliary molecular perturbations to cell death signalling. In the age-related hearing loss and noise-exposure models, stereocilia fusion was more restricted within the bundles, yet both models exhibited oncomodulin upregulation at the fusion sites, implying perturbed calcium homeostasis. We conclude that stereocilia fusion is linked with the failure to maintain cellular proteostasis and with disturbances in stereociliary calcium balance. KEY POINTS: Stereocilia fusion is a hair cell pathology causing hearing loss. Inactivation of Manf, a component of the endoplasmic reticulum proteostasis machinery, has a cell-intrinsic mode of action in triggering outer hair cell stereocilia fusion and the death of these cells. The genetic background with Cadherin 23 missense mutation contributes to the high susceptibility of outer hair cells to stereocilia fusion, evidenced in Manf-inactivated mice and in the mouse models of early-onset hearing loss and noise exposure. Endoplasmic reticulum stress feeds to outer hair cell stereocilia bundle pathology and impairs the molecular anatomy of calcium regulation. The maintenance of the outer hair cell stereocilia bundle cohesion is challenged by intrinsic and extrinsic stressors, and understanding the underlying mechanisms will probably benefit the development of interventions to promote hearing health.


Asunto(s)
Cadherinas , Células Ciliadas Auditivas Externas , Mecanotransducción Celular , Estereocilios , Animales , Estereocilios/metabolismo , Estereocilios/patología , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/patología , Ratones , Cadherinas/metabolismo , Cadherinas/genética , Estrés del Retículo Endoplásmico , Ratones Endogámicos C57BL , Masculino , Calcio/metabolismo , Miosina VIIa/metabolismo , Femenino , Pérdida Auditiva/patología , Pérdida Auditiva/genética , Pérdida Auditiva/metabolismo , Mutación Missense , Proteínas de Unión al Calcio
2.
Neuropathol Appl Neurobiol ; 50(4): e12999, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39036837

RESUMEN

AIMS: Endoplasmic reticulum stress followed by the unfolded protein response is one of the cellular mechanisms contributing to the progression of α-synuclein pathology in Parkinson's disease and other Lewy body diseases. We aimed to investigate the activation of endoplasmic reticulum stress and its correlation with α-synuclein pathology in human post-mortem brain tissue. METHODS: We analysed brain tissue from 45 subjects-14 symptomatic patients with Lewy body disease, 19 subjects with incidental Lewy body disease, and 12 healthy controls. The analysed brain regions included the medulla, pons, midbrain, striatum, amygdala and entorhinal, temporal, frontal and occipital cortex. We analysed activation of endoplasmic reticulum stress via levels of the unfolded protein response-related proteins (Grp78, eIF2α) and endoplasmic reticulum stress-regulating neurotrophic factors (MANF, CDNF). RESULTS: We showed that regional levels of two endoplasmic reticulum-localised neurotrophic factors, MANF and CDNF, did not change in response to accumulating α-synuclein pathology. The concentration of MANF negatively correlated with age in specific regions. eIF2α was upregulated in the striatum of Lewy body disease patients and correlated with increased α-synuclein levels. We found the upregulation of chaperone Grp78 in the amygdala and nigral dopaminergic neurons of Lewy body disease patients. Grp78 levels in the amygdala strongly correlated with soluble α-synuclein levels. CONCLUSIONS: Our data suggest a strong but regionally specific change in Grp78 and eIF2α levels, which positively correlates with soluble α-synuclein levels. Additionally, MANF levels decreased in dopaminergic neurons in the substantia nigra. Our research suggests that endoplasmic reticulum stress activation is not associated with Lewy pathology but rather with soluble α-synuclein concentration and disease progression.


Asunto(s)
Chaperón BiP del Retículo Endoplásmico , Factor 2 Eucariótico de Iniciación , Proteínas de Choque Térmico , Enfermedad por Cuerpos de Lewy , Respuesta de Proteína Desplegada , Regulación hacia Arriba , alfa-Sinucleína , Humanos , Enfermedad por Cuerpos de Lewy/patología , Enfermedad por Cuerpos de Lewy/metabolismo , Chaperón BiP del Retículo Endoplásmico/metabolismo , alfa-Sinucleína/metabolismo , Masculino , Anciano , Femenino , Respuesta de Proteína Desplegada/fisiología , Anciano de 80 o más Años , Proteínas de Choque Térmico/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Persona de Mediana Edad , Factores de Crecimiento Nervioso/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Biomarcadores/metabolismo
3.
Pharmacol Ther ; 254: 108594, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38290651

RESUMEN

Cerebral dopamine neurotrophic factor (CDNF) is an endogenous protein in humans and other vertebrates, and it has been shown to have protective and restorative effects on cells in various disease models. Although it is named as a neurotrophic factor, its actions are drastically different from classical neurotrophic factors such as neurotrophins or the glial cell line-derived neurotrophic family of proteins. Like all secreted proteins, CDNF has a signal sequence at the N-terminus, but unlike common growth factors it has a KDEL-receptor retrieval sequence at the C-terminus. Thus, CDNF is mainly located in the ER. In response to adverse effects, such as ER stress, the expression of CDNF is upregulated and can alleviate ER stress. Also different from other neurotrophic factors, CDNF reduces protein aggregation and inflammation in disease models. Although it is an ER luminal protein, it can surprisingly directly interact with alpha-synuclein, a protein involved in the pathogenesis of synucleinopathies e.g., Parkinson's disease. Pleiotropic CDNF has therapeutic potential and has been tested as a recombinant human protein and gene therapy. The neuroprotective and neurorestorative effects have been described in a number of preclinical studies of Parkinson's disease, stroke and amyotrophic lateral sclerosis. Currently, it was successfully evaluated for safety in a phase 1/2 clinical trial for Parkinson's disease. Collectively, based on recent findings on the mode of action and therapeutic potential of CDNF, its use as a drug could be expanded to other ER stress-related diseases.


Asunto(s)
Enfermedad de Parkinson , Animales , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Factores de Crecimiento Nervioso/uso terapéutico , Factores de Crecimiento Nervioso/metabolismo , Proteínas Recombinantes/uso terapéutico
4.
Int J Nanomedicine ; 19: 4857-4875, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38828195

RESUMEN

Brain diseases are the most devastating problem among the world's increasingly aging population, and the number of patients with neurological diseases is expected to increase in the future. Although methods for delivering drugs to the brain have advanced significantly, none of these approaches provide satisfactory results for the treatment of brain diseases. This remains a challenge due to the unique anatomy and physiology of the brain, including tight regulation and limited access of substances across the blood-brain barrier. Nanoparticles are considered an ideal drug delivery system to hard-to-reach organs such as the brain. The development of new drugs and new nanomaterial-based brain treatments has opened various opportunities for scientists to develop brain-specific delivery systems that could improve treatment outcomes for patients with brain disorders such as Alzheimer's disease, Parkinson's disease, stroke and brain tumors. In this review, we discuss noteworthy literature that examines recent developments in brain-targeted nanomedicines used in the treatment of neurological diseases.


Asunto(s)
Barrera Hematoencefálica , Encéfalo , Sistemas de Liberación de Medicamentos , Nanomedicina , Humanos , Nanomedicina/métodos , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Encéfalo/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Animales , Nanopartículas/química , Encefalopatías/tratamiento farmacológico , Sistema de Administración de Fármacos con Nanopartículas/química , Sistema de Administración de Fármacos con Nanopartículas/farmacocinética , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Alzheimer/tratamiento farmacológico
5.
Nat Commun ; 15(1): 1034, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310105

RESUMEN

Obesity, a global health challenge, is a major risk factor for multiple life-threatening diseases, including diabetes, fatty liver, and cancer. There is an ongoing need to identify safe and tolerable therapeutics for obesity management. Herein, we show that treatment with artesunate, an artemisinin derivative approved by the FDA for the treatment of severe malaria, effectively reduces body weight and improves metabolic profiles in preclinical models of obesity, including male mice with overnutrition-induced obesity and male cynomolgus macaques with spontaneous obesity, without inducing nausea and malaise. Artesunate promotes weight loss and reduces food intake in obese mice and cynomolgus macaques by increasing circulating levels of Growth Differentiation Factor 15 (GDF15), an appetite-regulating hormone with a brainstem-restricted receptor, the GDNF family receptor α-like (GFRAL). Mechanistically, artesunate induces the expression of GDF15 in multiple organs, especially the liver, in mice through a C/EBP homologous protein (CHOP)-directed integrated stress response. Inhibition of GDF15/GFRAL signalling by genetic ablation of GFRAL or tissue-specific knockdown of GDF15 abrogates the anti-obesity effect of artesunate in mice with diet-induced obesity, suggesting that artesunate controls bodyweight and appetite in a GDF15/GFRAL signalling-dependent manner. These data highlight the therapeutic benefits of artesunate in the treatment of obesity and related comorbidities.


Asunto(s)
Factor 15 de Diferenciación de Crecimiento , Obesidad , Ratones , Masculino , Animales , Artesunato/farmacología , Artesunato/uso terapéutico , Factor 15 de Diferenciación de Crecimiento/genética , Factor 15 de Diferenciación de Crecimiento/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Primates , Macaca/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA