Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(21): 213601, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38856273

RESUMEN

We present a novel atom interferometer configuration that combines large momentum transfer with the enhancement of an optical resonator for the purpose of measuring gravitational strain in the horizontal directions. Using Bragg diffraction and taking advantage of the optical gain provided by the resonator, we achieve momentum transfer up to 8ℏk with mW level optical power in a cm-sized resonating waist. Importantly, our experiment uses an original resonator design that allows for a large resonating beam waist and eliminates the need to trap atoms in cavity modes. We demonstrate inertial sensitivity in the horizontal direction by measuring the change in tilt of our resonator. This result paves the way for future hybrid atom or optical gravitational wave detectors. Furthermore, the versatility of our method extends to a wide range of measurement geometries and atomic sources, opening up new avenues for the realization of highly sensitive inertial atom sensors.

2.
Phys Rev Lett ; 123(6): 061102, 2019 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-31491160

RESUMEN

The accelerated expansion of the universe motivates a wide class of scalar field theories that modify general relativity (GR) on large scales. Such theories require a screening mechanism to suppress the new force in regions where the weak field limit of GR has been experimentally tested. We have used atom interferometry to measure the acceleration of an atom toward a macroscopic test mass inside a high vacuum chamber, where new forces can be unscreened. Our measurement shows no evidence of new forces, a result that places stringent bounds on chameleon and symmetron theories of modified gravity.

3.
Sci Rep ; 10(1): 3268, 2020 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-32094360

RESUMEN

We describe the realization and characterization of a compact, autonomous fiber laser system that produces the optical frequencies required for laser cooling, trapping, manipulation, and detection of 87Rb atoms - a typical atomic species for emerging quantum technologies. This device, a customized laser system from the Muquans company, is designed for use in the challenging operating environment of the Laboratoire Souterrain à Bas Bruit (LSBB) in France, where a new large scale atom interferometer is being constructed underground - the MIGA antenna. The mobile bench comprises four frequency-agile C-band Telecom diode lasers that are frequency doubled to 780 nm after passing through high-power fiber amplifiers. The first laser is frequency stabilized on a saturated absorption signal via lock-in amplification, which serves as an optical frequency reference for the other three lasers via optical phase-locked loops. Power and polarization stability are maintained through a series of custom, flexible micro-optic splitter/combiners that contain polarization optics, acousto-optic modulators, and shutters. Here, we show how the laser system is designed, showcasing qualities such as reliability, stability, remote control, and flexibility, while maintaining the qualities of laboratory equipment. We characterize the laser system by measuring the power, polarization, and frequency stability. We conclude with a demonstration using a cold atom source from the MIGA project and show that this laser system fulfills all requirements for the realization of the antenna.

4.
Rev Sci Instrum ; 91(3): 033203, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32260006

RESUMEN

Experiments in Atomic, Molecular, and Optical (AMO) physics require precise and accurate control of digital, analog, and radio frequency (RF) signals. We present control hardware based on a field programmable gate array core that drives various modules via a simple interface bus. The system supports an operating frequency of 10 MHz and a memory depth of 8 M (223) instructions, both easily scalable. Successive experimental sequences can be stacked with no dead time and synchronized with external events at any instructions. Two or more units can be cascaded and synchronized to a common clock, a feature useful to operate large experimental setups in a modular way.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA