Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Emerg Infect Dis ; 27(8): 2224-2227, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34287138

RESUMEN

Two variants of highly pathogenic avian influenza A(H5N8) virus were detected in dead poultry in Western Siberia, Russia, during August and September 2020. One variant was represented by viruses of clade 2.3.4.4b and the other by a novel reassortant between clade 2.3.4.4b and Eurasian low pathogenicity avian influenza viruses circulating in wild birds.


Asunto(s)
Subtipo H5N8 del Virus de la Influenza A , Gripe Aviar , Animales , Animales Salvajes , Aves , Brotes de Enfermedades , Subtipo H5N8 del Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Filogenia , Virus Reordenados/genética , Federación de Rusia/epidemiología , Siberia/epidemiología
2.
J Virol ; 94(14)2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32350072

RESUMEN

To assess the current status of influenza A viruses of swine (IAVs-S) throughout Japan and to investigate how these viruses persisted and evolve on pig farms, we genetically characterized IAVs-S isolated during 2015 to 2019. Nasal swab samples collected through active surveillance and lung tissue samples collected for diagnosis yielded 424 IAVs-S, comprising 78 H1N1, 331 H1N2, and 15 H3N2 viruses, from farms in 21 sampled prefectures in Japan. Phylogenetic analyses of surface genes revealed that the 1A.1 classical swine H1 lineage has evolved uniquely since the late 1970s among pig populations in Japan. During 2015 to 2019, A(H1N1)pdm09 viruses repeatedly became introduced into farms and reassorted with endemic H1N2 and H3N2 IAVs-S. H3N2 IAVs-S isolated during 2015 to 2019 formed a clade that originated from 1999-2000 human seasonal influenza viruses; this situation differs from previous reports, in which H3N2 IAVs-S derived from human seasonal influenza viruses were transmitted sporadically from humans to swine but then disappeared without becoming established within the pig population. At farms where IAVs-S were frequently isolated for at least 3 years, multiple introductions of IAVs-S with phylogenetically distinct hemagglutinin (HA) genes occurred. In addition, at one farm, IAVs-S derived from a single introduction persisted for at least 3 years and carried no mutations at the deduced antigenic sites of the hemagglutinin protein, except for one at the antigenic site (Sa). Our results extend our understanding regarding the status of IAVs-S currently circulating in Japan and how they genetically evolve at the farm level.IMPORTANCE Understanding the current status of influenza A viruses of swine (IAVs-S) and their evolution at the farm level is important for controlling these pathogens. Efforts to monitor IAVs-S during 2015 to 2019 yielded H1N1, H1N2, and H3N2 viruses. H1 genes in Japanese swine formed a unique clade in the classical swine H1 lineage of 1A.1, and H3 genes originating from 1999-2000 human seasonal influenza viruses appear to have become established among Japanese swine. A(H1N1)pdm09-derived H1 genes became introduced repeatedly and reassorted with endemic IAVs-S, resulting in various combinations of surface and internal genes among pig populations in Japan. At the farm level, multiple introductions of IAVs-S with phylogenetically distinct HA sequences occurred, or IAVs-S derived from a single introduction have persisted for at least 3 years with only a single mutation at the antigenic site of the HA protein. Continued monitoring of IAVs-S is necessary to update and maximize control strategies.


Asunto(s)
Evolución Molecular , Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/genética , Filogenia , Enfermedades de los Porcinos/genética , Porcinos/virología , Animales , Humanos , Japón , Infecciones por Orthomyxoviridae/virología , Enfermedades de los Porcinos/virología
3.
Arch Virol ; 164(2): 457-472, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30415389

RESUMEN

Surveillance studies of influenza A virus of swine (IAV-S) have accumulated information regarding IAVs-S circulating in Thailand, but how IAVs-S evolve within a farm remains unclear. In the present study, we isolated 82 A(H1N1)pdm09 and 87 H3N2 viruses from four farms from 2011 through 2017. We then phylogenetically and antigenically analyzed the isolates to elucidate their evolution within each farm. Phylogenetic analysis demonstrated multiple introductions of A(H1N1)pdm09 viruses that resembled epidemic A(H1N1)pdm09 strains in humans in Thailand, and they reassorted with H3N2 viruses as well as other A(H1N1)pdm09 viruses. Antigenic analysis revealed that the viruses had acquired antigenic diversity either by accumulating substitutions in the hemagglutinin protein or through the introduction of IAV-S strains with different antigenicity. Our results, obtained through continuous longitudinal surveillance, revealed that IAV-S can be maintained on a pig farm over several years through the generation of antigenic diversity due to the accumulation of mutations, introduction of new strains, and reassortment events.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/inmunología , Infecciones por Orthomyxoviridae/veterinaria , Enfermedades de los Porcinos/virología , Animales , Variación Antigénica , Variación Genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H1N1 del Virus de la Influenza A/clasificación , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H3N2 del Virus de la Influenza A/clasificación , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Estudios Longitudinales , Infecciones por Orthomyxoviridae/virología , Filogenia , Porcinos , Tailandia
4.
Arch Virol ; 164(2): 535-545, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30539262

RESUMEN

Human infection by low-pathogenic avian influenza viruses of the H7N9 subtype was first reported in March 2013 in China. Subsequently, these viruses caused five outbreaks through September 2017. In the fifth outbreak, H7N9 virus possessing a multiple basic amino acid insertion in the cleavage site of hemagglutinin emerged and caused 4% of all human infections in that period. To date, H7N9 highly pathogenic avian influenza viruses (HPAIVs) have been isolated from poultry, mostly chickens, as well as the environment. To evaluate the relative infectivity of these viruses in poultry, chickens and ducks were subjected to experimental infection with two H7N9 HPAIVs isolated from humans, namely A/Guangdong/17SF003/2016 and A/Taiwan/1/2017. When chickens were inoculated with the HPAIVs at a dose of 106 50% egg infectious dose (EID50), all chickens died within 2-5 days after inoculation, and the viruses replicated in most of the internal organs examined. The 50% lethal doses of A/Guangdong/17SF003/2016 and A/Taiwan/1/2017 in chickens were calculated as 103.3 and 104.7 EID50, respectively. Conversely, none of the ducks inoculated with either virus displayed any clinical signs, and less-efficient virus replication and less shedding were observed in ducks compared to chickens. These findings indicate that chickens, but not ducks, are highly permissive hosts for emerging H7N9 HPAIVs.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Gripe Humana/virología , Enfermedades de las Aves de Corral/virología , Secuencia de Aminoácidos , Animales , Pollos , Patos , Humanos , Subtipo H7N9 del Virus de la Influenza A/clasificación , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/aislamiento & purificación , Filogenia , Homología de Secuencia de Aminoácido , Proteínas Virales/química , Proteínas Virales/genética , Virulencia
5.
Nature ; 501(7468): 551-5, 2013 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-23842494

RESUMEN

Avian influenza A viruses rarely infect humans; however, when human infection and subsequent human-to-human transmission occurs, worldwide outbreaks (pandemics) can result. The recent sporadic infections of humans in China with a previously unrecognized avian influenza A virus of the H7N9 subtype (A(H7N9)) have caused concern owing to the appreciable case fatality rate associated with these infections (more than 25%), potential instances of human-to-human transmission, and the lack of pre-existing immunity among humans to viruses of this subtype. Here we characterize two early human A(H7N9) isolates, A/Anhui/1/2013 (H7N9) and A/Shanghai/1/2013 (H7N9); hereafter referred to as Anhui/1 and Shanghai/1, respectively. In mice, Anhui/1 and Shanghai/1 were more pathogenic than a control avian H7N9 virus (A/duck/Gunma/466/2011 (H7N9); Dk/GM466) and a representative pandemic 2009 H1N1 virus (A/California/4/2009 (H1N1pdm09); CA04). Anhui/1, Shanghai/1 and Dk/GM466 replicated well in the nasal turbinates of ferrets. In nonhuman primates, Anhui/1 and Dk/GM466 replicated efficiently in the upper and lower respiratory tracts, whereas the replicative ability of conventional human influenza viruses is typically restricted to the upper respiratory tract of infected primates. By contrast, Anhui/1 did not replicate well in miniature pigs after intranasal inoculation. Critically, Anhui/1 transmitted through respiratory droplets in one of three pairs of ferrets. Glycan arrays showed that Anhui/1, Shanghai/1 and A/Hangzhou/1/2013 (H7N9) (a third human A(H7N9) virus tested in this assay) bind to human virus-type receptors, a property that may be critical for virus transmissibility in ferrets. Anhui/1 was found to be less sensitive in mice to neuraminidase inhibitors than a pandemic H1N1 2009 virus, although both viruses were equally susceptible to an experimental antiviral polymerase inhibitor. The robust replicative ability in mice, ferrets and nonhuman primates and the limited transmissibility in ferrets of Anhui/1 suggest that A(H7N9) viruses have pandemic potential.


Asunto(s)
Virus de la Influenza A , Gripe Humana/virología , Infecciones por Orthomyxoviridae/virología , Replicación Viral , Animales , Antivirales/farmacología , Células Cultivadas , Pollos/virología , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , Perros , Inhibidores Enzimáticos/farmacología , Femenino , Hurones/virología , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/enzimología , Virus de la Influenza A/química , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza A/patogenicidad , Gripe Humana/tratamiento farmacológico , Macaca fascicularis/virología , Células de Riñón Canino Madin Darby , Masculino , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Enfermedades de los Monos/patología , Enfermedades de los Monos/virología , Neuraminidasa/antagonistas & inhibidores , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/transmisión , Codorniz/virología , Porcinos/virología , Porcinos Enanos/virología , Replicación Viral/efectos de los fármacos
6.
Biochem Biophys Res Commun ; 496(3): 814-819, 2018 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-29395082

RESUMEN

Channelrhodopsin-2 (ChR2), a light-activated cation-selective ion channel, has been widely used as a tool in optogenetic research. ChR2 is specifically sensitive to wavelengths less than 550 nm. One of the methods to expand the sensitivity of a channelrhodopsin to a wider range of wavelengths is to express another channelrhodopsin in the cells by the transduction of an additional gene. Here, we report the characteristic features of cells expressing two types of channelrhodopsins, each having different wavelength sensitivities. In HEK293 cells stably expressing ChR2, photocurrents were elicited at stimuli of 400-550 nm, and the wavelength sensitivity range was expanded by the additional transduction of the modified Volvox channelrhodopsin-1 (mVChR1) gene, which has broad wavelength sensitivities, ranging from 400 to 600 nm. However, the photocurrent at 550 nm was lower than that of the mVChR1-expressing cell; moreover, the turning-on and turning-off constants were delayed, and the deactivation rates were decreased. Meanwhile, the response to lower light intensity was improved by the additional gene. Thus, the transduction of an additional gene is a useful method to improve the light and wavelength sensitivities, as well as photocurrent kinetic profiles, of channelrhodopsins.


Asunto(s)
Channelrhodopsins/fisiología , Channelrhodopsins/efectos de la radiación , Activación del Canal Iónico/fisiología , Activación del Canal Iónico/efectos de la radiación , Fototransducción/fisiología , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Células HEK293 , Humanos , Cinética , Luz , Dosis de Radiación
7.
J Virol ; 91(1)2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27795418

RESUMEN

Active surveillance of influenza A viruses of swine (IAV-S) involving 262 farms and 10 slaughterhouses in seven provinces in northern and southern Vietnam from 2010 to 2015 yielded 388 isolates from 32 farms; these viruses were classified into H1N1, H1N2, and H3N2 subtypes. Whole-genome sequencing followed by phylogenetic analysis revealed that the isolates represented 15 genotypes, according to the genetic constellation of the eight segments. All of the H1N1 viruses were entirely A(H1N1)pdm09 viruses, whereas all of the H1N2 and H3N2 viruses were reassortants among 5 distinct ancestral viruses: H1 and H3 triple-reassortant (TR) IAV-S that originated from North American pre-2009 human seasonal H1, human seasonal H3N2, and A(H1N1)pdm09 viruses. Notably, 93% of the reassortant IAV-S retained M genes that were derived from A(H1N1)pdm09, suggesting some advantage in terms of their host adaptation. Bayesian Markov chain Monte Carlo analysis revealed that multiple introductions of A(H1N1)pdm09 and TR IAV-S into the Vietnamese pig population have driven the genetic diversity of currently circulating Vietnamese IAV-S. In addition, our results indicate that a reassortant IAV-S with human-like H3 and N2 genes and an A(H1N1)pdm09 origin M gene likely caused a human case in Ho Chi Minh City in 2010. Our current findings indicate that human-to-pig transmission as well as cocirculation of different IAV-S have contributed to diversifying the gene constellations of IAV-S in Vietnam. IMPORTANCE: This comprehensive genetic characterization of 388 influenza A viruses of swine (IAV-S) isolated through active surveillance of Vietnamese pig farms from 2010 through 2015 provides molecular epidemiological insight into the genetic diversification of IAV-S in Vietnam after the emergence of A(H1N1)pdm09 viruses. Multiple reassortments among A(H1N1)pdm09 viruses and enzootic IAV-S yielded 14 genotypes, 9 of which carried novel gene combinations. The reassortants that carried M genes derived from A(H1N1)pdm09 viruses became predominant, replacing those of the IAV-S that had been endemic in Vietnam since 2011. Notably, one of the novel reassortants likely caused a human case in Vietnam. Given that Vietnam is the second-largest pig-producing country in Asia, continued monitoring of IAV-S is highly important from the viewpoints of both the swine industry and human public health.


Asunto(s)
Genoma Viral , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/veterinaria , Filogenia , Enfermedades de los Porcinos/epidemiología , Animales , Teorema de Bayes , Monitoreo Epidemiológico , Variación Genética , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Subtipo H1N1 del Virus de la Influenza A/clasificación , Subtipo H1N2 del Virus de la Influenza A/clasificación , Subtipo H3N2 del Virus de la Influenza A/clasificación , Cadenas de Markov , Método de Montecarlo , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Virus Reordenados/genética , Porcinos , Enfermedades de los Porcinos/transmisión , Enfermedades de los Porcinos/virología , Vietnam/epidemiología
8.
Arch Virol ; 163(5): 1195-1207, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29392495

RESUMEN

From 29 November 2016 to 24 January 2017, sixty-three cases of H5N6 highly pathogenic avian influenza virus (HPAIV) infections were detected in wild birds in Ibaraki Prefecture, Japan. Here, we analyzed the genetic, temporal, and geographic correlations of these 63 HPAIVs to elucidate their dissemination throughout the prefecture. Full-genome sequence analysis of the Ibaraki isolates showed that 7 segments (PB2, PB1, PA, HA, NP, NA, NS) were derived from G1.1.9 strains while the M segment was from G1.1 strains; both groups of strains circulated in south China. Pathological studies revealed severe systemic infection in dead swans (the majority of dead birds and the only species necropsied), thus indicating high susceptibility to H5N6 HPAIVs. Coalescent phylogenetic analysis using the 7 G1.1.9-derived segments enabled detailed analysis of the short-term evolution of these highly homologous HPAIVs. This analysis revealed that the H5N6 HPAIVs isolated from wild birds in Ibaraki Prefecture were divided into 7 groups. Spatial analysis demonstrated that most of the cases concentrated around Senba Lake originated from a single source, and progeny viruses were transmitted to other locations after the infection expanded in mute swans. In contrast, within just a 5-km radius of the area in which cases were concentrated, three different intrusions of H5N6 HPAIVs were evident. Multi-segment analysis of short-term evolution showed that not only was the invading virus spread throughout Ibaraki Prefecture but also that, despite the small size of this region, multiple invasions had occurred during winter 2016-2017.


Asunto(s)
Aves/virología , Genoma Viral , Virus de la Influenza A/patogenicidad , Gripe Aviar/transmisión , Gripe Aviar/virología , Animales , Animales Salvajes/virología , Pollos/virología , Patos/virología , Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Gripe Aviar/mortalidad , Japón/epidemiología , Filogenia , Virus Reordenados/genética , Virus Reordenados/patogenicidad , Análisis de Secuencia de ADN
9.
BMC Vet Res ; 14(1): 115, 2018 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-29587842

RESUMEN

BACKGROUND: Experimental infection of pigs via direct intranasal or intratracheal inoculation has been mainly used to study the infectious process of influenza A viruses of swine (IAVs-S). Nebulization is known to be an alternative method for inoculating pigs with IAVs-S, because larger quantities of virus potentially can be delivered throughout the respiratory tract. However, there is very little data on the experimental infection of pigs by inhalation using nebulizer. In the current study, we used intranasal nebulization to inoculate pigs with 9 different IAVs-S-3 H1N1, 2 H1N2, and 4 H3N2 strains. We then assessed the process of infection by evaluating the clinical signs, nasal and oral viral shedding, and seroconversion rates of the pigs inoculated. RESULTS: Lethargy and sneezing were the predominant clinical signs among pigs inoculated with 7 of the 9 strains evaluated; the remaining 2 strains (1 H1N1 and 1 H1N2 isolate) failed to induce any clinical signs throughout the experiments. Significantly increased rectal temperatures were observed with an H1N1 or H3N2 strains between 1 and 3 days post-inoculation (dpi). In addition, patterns of nasal viral shedding differed among the strains: nasal viral shedding began on 1 dpi for 6 strains, with all 9 viruses being shed from 2 to 5 dpi. The detection of viral shedding was less sensitive from oral samples than nasal secretions. Viral shedding was not detected in either nasal or oral swabs after 10 dpi. According to hemagglutination-inhibition assays, all inoculated pigs had seroconverted to the inoculating virus by 14 dpi, with titers ranging from 10 to 320. CONCLUSIONS: Our current findings show that intranasal nebulization successfully established IAV-S infections in pigs and demonstrate that clinical signs, viral shedding, and host immune responses varied among the strains inoculated.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H1N2 del Virus de la Influenza A , Subtipo H3N2 del Virus de la Influenza A , Infecciones por Orthomyxoviridae/veterinaria , Enfermedades de los Porcinos/virología , Administración Intranasal/métodos , Administración Intranasal/veterinaria , Animales , Nebulizadores y Vaporizadores/veterinaria , Infecciones por Orthomyxoviridae/etiología , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Porcinos , Enfermedades de los Porcinos/etiología , Enfermedades de los Porcinos/patología , Esparcimiento de Virus
10.
Emerg Infect Dis ; 23(4): 691-695, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28322695

RESUMEN

Highly pathogenic avian influenza viruses (HPAIVs) A(H5N6) were concurrently introduced into several distant regions of Japan in November 2016. These viruses were classified into the genetic clade 2.3.4.4c and were genetically closely related to H5N6 HPAIVs recently isolated in South Korea and China. In addition, these HPAIVs showed further antigenic drift.


Asunto(s)
Virus de la Influenza A/genética , Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Animales , Aves , Gripe Aviar/epidemiología , Gripe Aviar/mortalidad , Japón , Filogenia
11.
J Gen Virol ; 98(9): 2235-2247, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28825532

RESUMEN

Previous research revealed the induction of chicken USP18 (chUSP18) in the lungs of chickens infected with highly pathogenic avian influenza viruses (HPAIVs). This activity was correlated with the degree of pathogenicity of the viruses to chickens. As mammalian ubiquitin-specific protease (USP18) is known to remove type I interferon (IFN I)-inducible ubiquitin-like molecules from conjugated proteins and block IFN I signalling, we explored the function of the chicken homologue of USP18 during avian influenza virus infection. With this aim, we cloned chUSP18 from cultured chicken cells and revealed that the putative chUSP18 ORF comprises 1137 bp. Comparative analysis of the predicted aa sequence of chUSP18 with those of human and mouse USP18 revealed relatively high sequence similarity among the sequences, including domains specific for the ubiquitin-specific processing protease family. Furthermore, we found that chUSP18 expression was induced by chicken IFN I, as observed for mammalian USP18. Experiments based on chUSP18 over-expression and depletion demonstrated that chUSP18 significantly enhanced the replication of a low-pathogenic avian influenza virus (LPAIV), but not an HPAIV. Our findings suggest that chUSP18, being similar to mammalian USP18, acts as a pro-viral factor during LPAIV replication in vitro.


Asunto(s)
Proteínas Aviares/metabolismo , Virus de la Influenza A/fisiología , Gripe Aviar/enzimología , Enfermedades de las Aves de Corral/enzimología , Proteasas Ubiquitina-Específicas/metabolismo , Replicación Viral , Animales , Proteínas Aviares/genética , Pollos , Virus de la Influenza A/genética , Virus de la Influenza A/patogenicidad , Gripe Aviar/genética , Gripe Aviar/virología , Enfermedades de las Aves de Corral/genética , Enfermedades de las Aves de Corral/virología , Proteasas Ubiquitina-Específicas/genética , Virulencia
12.
PLoS Pathog ; 11(7): e1005062, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26222066

RESUMEN

Developing antiviral therapies for influenza A virus (IAV) infection is an ongoing process because of the rapid rate of antigenic mutation and the emergence of drug-resistant viruses. The ideal strategy is to develop drugs that target well-conserved, functionally restricted, and unique surface structures without affecting host cell function. We recently identified the antiviral compound, RK424, by screening a library of 50,000 compounds using cell-based infection assays. RK424 showed potent antiviral activity against many different subtypes of IAV in vitro and partially protected mice from a lethal dose of A/WSN/1933 (H1N1) virus in vivo. Here, we show that RK424 inhibits viral ribonucleoprotein complex (vRNP) activity, causing the viral nucleoprotein (NP) to accumulate in the cell nucleus. In silico docking analysis revealed that RK424 bound to a small pocket in the viral NP. This pocket was surrounded by three functionally important domains: the RNA binding groove, the NP dimer interface, and nuclear export signal (NES) 3, indicating that it may be involved in the RNA binding, oligomerization, and nuclear export functions of NP. The accuracy of this binding model was confirmed in a NP-RK424 binding assay incorporating photo-cross-linked RK424 affinity beads and in a plaque assay evaluating the structure-activity relationship of RK424. Surface plasmon resonance (SPR) and pull-down assays showed that RK424 inhibited both the NP-RNA and NP-NP interactions, whereas size exclusion chromatography showed that RK424 disrupted viral RNA-induced NP oligomerization. In addition, in vitro nuclear export assays confirmed that RK424 inhibited nuclear export of NP. The amino acid residues comprising the NP pocket play a crucial role in viral replication and are highly conserved in more than 7,000 NP sequences from avian, human, and swine influenza viruses. Furthermore, we found that the NP pocket has a surface structure different from that of the pocket in host molecules. Taken together, these results describe a promising new approach to developing influenza virus drugs that target a novel pocket structure within NP.


Asunto(s)
Antivirales/farmacología , Virus de la Influenza A/metabolismo , Multimerización de Proteína , Proteínas de Unión al ARN/metabolismo , Proteínas del Núcleo Viral/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Animales , Humanos , Virus de la Influenza A/efectos de los fármacos , Ratones , Proteínas de la Nucleocápside , ARN Viral/efectos de los fármacos , ARN Viral/metabolismo , Relación Estructura-Actividad
13.
Arch Virol ; 162(1): 103-116, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27686072

RESUMEN

H7N9 human influenza virus A/Anhui/1/2013 (Anhui2013) showed low pathogenicity in chickens, quail, and pigeons, with quail being the most susceptible among the species tested. IVPIE1-1, which was recovered from a dead chicken after intravenous inoculation of Anhui 2013, had broader tissue tropism in chickens than did the original inoculum, as well as amino acid substitutions in the polymerase acidic gene and neuraminidase gene segments, but its pathogenicity was not enhanced. Viruses obtained after passage of Anhui 2013 in 10- and 14-day-old embryonated eggs showed rapid accumulation of amino acid substitutions at the receptor-binding site of the hemagglutinin protein. Two strains obtained through egg passage, 10E4/14E17 and 10E4/10E13, replicated better in intranasally infected chickens than did the original Anhui 2013 strain, yet the new isolates showed low pathogenicity in chickens despite their amino acid substitutions. The increased virus replication in chickens of 10E4/14E17 and 10E4/10E13 was not correlated with temperature-sensitive replication, given that virus replication was suppressed at increased temperatures. The existence of highly susceptible hosts, such as quail, which permit asymptomatic infection, facilitates increased mutation of the virus through amino acid substitution at the receptor-binding site, and this might be one of the mechanisms underlying the prolonged circulation of H7N9 influenza virus.


Asunto(s)
Adaptación Biológica , Pollos/virología , Columbidae/virología , Subtipo H7N9 del Virus de la Influenza A/fisiología , Gripe Humana/virología , Codorniz/virología , Tropismo Viral , Animales , Especificidad del Huésped , Humanos , Subtipo H7N9 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Gripe Aviar/patología , Gripe Aviar/virología
14.
Virus Genes ; 53(1): 89-94, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27714496

RESUMEN

We report five cases of community- and hospital-acquired infections with oseltamivir- and peramivir-resistant A(H1N1)pdm09 viruses possessing the neuraminidase (NA) H275Y mutation during January-February 2016 in Japan. One case was hospitalized and was receiving oseltamivir for prophylaxis. The remaining four cases were not taking antiviral drugs at the time of sampling. These cases were geographically distant and epidemiologically unrelated. The five viruses showed ~300-fold rise in IC50 values against oseltamivir and peramivir, defined as highly reduced inhibition according to the WHO definition. Overall, the prevalence of the H275Y A(H1N1)pdm09 viruses was 1.8 % (5/282). The resistant viruses possessed the V241I, N369 K, and N386 K substitutions in the NA that have been previously reported among A(H1N1)pdm09 to alter transmission fitness. Analysis of Michaelis constant (Km) revealed that two of the isolates had reduced NA affinity to MUNANA, while the other three isolates displayed a slightly decreased affinity compared to the sensitive viruses. Further studies are needed to monitor the community spread of resistant viruses and to assess their transmissibility.


Asunto(s)
Infecciones Comunitarias Adquiridas , Infección Hospitalaria , Farmacorresistencia Viral , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/genética , Gripe Humana/epidemiología , Gripe Humana/virología , Estaciones del Año , Ácidos Carbocíclicos , Adolescente , Adulto , Anciano , Niño , Preescolar , Ciclopentanos/farmacología , Femenino , Genes Virales , Guanidinas/farmacología , Humanos , Lactante , Japón/epidemiología , Masculino , Persona de Mediana Edad , Mutación , Oseltamivir/farmacología , Filogenia , Adulto Joven
15.
Arch Virol ; 161(10): 2797-806, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27449156

RESUMEN

Following the introduction of highly pathogenic avian influenza (HPAI) virus subtype H5N1, the Egyptian government implemented a massive poultry vaccination campaign as the cornerstone of its policies to control the virus. The efficacy of vaccination has been evaluated primarily by measuring titers of antibodies inhibiting the hemagglutinating activity of the viral hemagglutinin (HA). However, other aspects of the host response remain poorly understood. In the present study, in addition to hemagglutination inhibition (HI) titers, cytokine profiles were examined and IFNγ concentrations were measured in vivo after immunization with a whole inactivated virus (WIV) prepared from a classical strain of clade 2.2.1.2 (C121) and an antigenic drift variant of clade 2.2.1.1 (V1063). The results revealed an earlier response and higher HI titers and IFNγ levels in sera from chickens immunized with C121, accompanied by significantly higher expression of IL8, IL10, and IL18 in the spleen and IL6 and IL10 in the bursa, compared to those immunized with V1063. Furthermore, stimulation of the HD11 cell line with C121 induced gradual upregulation of pro-inflammatory cytokines, which was observed at 24 hours post-inoculation (hpi), and became more pronounced at 48 and 72 hpi, accompanied by upregulation of IFNα. Conversely, V1063 induced very early transient higher expression of pro-inflammatory cytokines at 3 and 6 hpi accompanied by upregulation of IL10, which then decreased at 24, 48 and 72 hpi. In summary, our results provide evidence of a correlation between adaptive immune responses induced by WIVs and higher expression of IL10 and IL18 in addition to early induction of IFNα. These findings could be used to improve immune responses induced by WIVs.


Asunto(s)
Citocinas/análisis , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Aviar/prevención & control , Animales , Anticuerpos Antivirales/sangre , Bolsa de Fabricio/inmunología , Pollos , Egipto , Perfilación de la Expresión Génica , Pruebas de Inhibición de Hemaglutinación , Vacunas contra la Influenza/administración & dosificación , Gripe Aviar/inmunología , Bazo/inmunología , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/inmunología
16.
Microbiol Immunol ; 60(4): 243-52, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26916882

RESUMEN

Poultry outbreaks caused by H5N8 highly pathogenic avian influenza viruses (HPAIVs) occurred in Japan between December 2014 and January 2015. During the same period; H5N8 HPAIVs were isolated from wild birds and the environment in Japan. The hemagglutinin (HA) genes of these isolates were found to belong to clade 2.3.4.4 and three sub-groups were distinguishable within this clade. All of the Japanese isolates from poultry outbreaks belonged to the same sub-group; whereas wild bird isolates belonged to the other sub-groups. To examine whether the difference in pathogenicity to chickens between isolates of different HA sub-groups of clade 2.3.4.4 could explain why the Japanese poultry outbreaks were only caused by a particular sub-group; pathogenicities of A/chicken/Miyazaki/7/2014 (Miyazaki2014; sub-group C) and A/duck/Chiba/26-372-48/2014 (Chiba2014; sub-group A) to chickens were compared and it was found that the lethality of Miyazaki2014 in chickens was lower than that of Chiba2014; according to the 50% chicken lethal dose. This indicated that differences in pathogenicity may not explain why the Japanese poultry outbreaks only involved group C isolates.


Asunto(s)
Aves/virología , Pollos/virología , Subtipo H5N8 del Virus de la Influenza A/aislamiento & purificación , Subtipo H5N8 del Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Animales , Anticuerpos Antivirales/inmunología , Embrión de Pollo , Brotes de Enfermedades/veterinaria , Patos/virología , Hemaglutininas/genética , Hemaglutininas/aislamiento & purificación , Subtipo H5N8 del Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Japón/epidemiología , Filogenia , Aves de Corral/virología , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/virología , Replicación Viral
17.
Microbiol Immunol ; 60(7): 511-5, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27240729

RESUMEN

Eye spray influenza vaccines for chickens are increasingly available; however, how to enhance cellular and antibody responses to them remains undetermined. Here, eye-drops containing the immune-enhancing adjuvants Pam2CSK4 or polyI:C were assessed in chickens. Application of these TLR agonists to chicken conjunctiva resulted in up-regulation of IL-1ß, but not other cytokines, including IFN and IL-6, in the spleen, lung and Harderian gland. Thus, responses to adjuvant applied to the conjunctival mucosa of chickens differ from those expected from the responses to intra-nasal adjuvants in mammals. Identifying an appropriate delivery route for adjuvants is crucial for evoking immune responses in chickens.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Pollos/inmunología , Pollos/metabolismo , Citocinas/biosíntesis , Inmunidad , Vacunas/inmunología , Animales , Anticuerpos Antivirales , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Vacunas contra la Influenza/inmunología , Gripe Aviar/inmunología , Ligandos , Lipopéptidos/administración & dosificación , Masculino , Membrana Mucosa/citología , Membrana Mucosa/inmunología , Membrana Mucosa/metabolismo , Poli I-C/administración & dosificación
18.
Rev Med Virol ; 25(6): 388-405, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26458727

RESUMEN

Asian H5 highly pathogenic avian influenza viruses (HPAIVs) that possess the clade 2.3.4.4 HA gene have been identified in wild birds and poultry since late 2014 in both Europe and North America (N. America). Clade 2.3.4.4 H5 HPAIVs of the H5N8 subtype have been isolated in both regions, whereas reassortment viruses with NA N1 and N2 subtypes of the North American (N. American). avian lineage have only been identified in N. America. The HA genes of those isolates were closely related to genes of the HPAIVs that have caused massive outbreaks in poultry in Korea since January 2014. The outbreaks caused by those viruses and the genetic relatedness of their HA and NA genes are reviewed in this study. Although the illegal movement of poultry and poultry products cannot be ruled out as a cause of intercontinental and intracontinental dissemination of clade 2.3.4.4 H5 HPAIVs during the winter of 2014-2015, transmission of the viruses by infected migratory birds appears to be a more plausible mechanism for their dissemination. In particular, the involvement of migratory birds in HPAIV transmission between Asia and N. America is highly likely because of the reassortments between H5N8 HPAIV and the N. American lineage avian influenza viruses.


Asunto(s)
Genotipo , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/epidemiología , Gripe Aviar/virología , Animales , Aves , Salud Global , Virus de la Influenza A/clasificación , Virus de la Influenza A/genética , Epidemiología Molecular , Aves de Corral , Virus Reordenados/clasificación , Virus Reordenados/genética , Virus Reordenados/aislamiento & purificación
19.
BMC Vet Res ; 12(1): 227, 2016 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-27724934

RESUMEN

BACKGROUND: Influenza A viruses of swine (IAV-S) cause acute and subclinical respiratory disease. To increase our understanding of the etiology of the subclinical form and thus help prevent the persistence of IAV-S in pig populations, we conducted active virologic surveillance in Vietnam, the second-largest pig-producing country in Asia, from February 2010 to December 2013. RESULTS: From a total of 7034 nasal swabs collected from clinically healthy pigs at 250 farms and 10 slaughterhouses, we isolated 172 IAV-S from swine at the weaning and early-fattening stages. The isolation rate of IAV-S was significantly higher among pigs aged 3 weeks to 4.5 months than in older and younger animals. IAV-S were isolated from 16 large, corporate farms and 6 family-operated farms from among the 250 farms evaluated. Multivariate logistic regression analysis revealed that "having more than 1,000 pigs" was the most influential risk factor for IAV-S positivity. Farms affected by reassortant IAV-S had significantly larger pig populations than did those where A(H1N1)pdm09 viruses were isolated, thus suggesting that large, corporate farms serve as sites of reassortment events. CONCLUSIONS: We demonstrate the asymptomatic circulation of IAV-S in the Vietnamese pig population. Raising a large number of pigs on a farm has the strongest impact on the incidence of subclinical IAV-S infection. Given that only some of the corporate farms surveyed were IAV-S positive, further active monitoring is necessary to identify additional risk factors important in subclinical infection of pigs with IAV-S in Vietnam.


Asunto(s)
Virus de la Influenza A/clasificación , Infecciones por Orthomyxoviridae/veterinaria , Enfermedades de los Porcinos/virología , Crianza de Animales Domésticos , Animales , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/virología , Porcinos , Enfermedades de los Porcinos/epidemiología , Vietnam/epidemiología
20.
J Virol ; 88(19): 11130-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25031333

RESUMEN

UNLABELLED: Amino acid substitutions were introduced into avian influenza virus PB1 in order to characterize the interaction between polymerase activity and pathogenicity. Previously, we used recombinant viruses containing the hemagglutinin (HA) and neuraminidase (NA) genes from the highly pathogenic avian influenza virus (HPAIV) H5N1 strain and other internal genes from two low-pathogenicity avian influenza viruses isolated from chicken and wild-bird hosts (LP and WB, respectively) to demonstrate that the pathogenicity of highly pathogenic avian influenza viruses (HPAIVs) of subtype H5N1 in chickens is regulated by the PB1 gene (Y. Uchida et al., J. Virol. 86:2686-2695, 2012, doi:http://dx.doi.org/10.1128/JVI.06374-11). In the present study, we introduced a C38Y substitution into WB PB1 and demonstrated that this substitution increased both polymerase activity in DF-1 cells in vitro and the pathogenicity of the recombinant viruses in chickens. The V14A substitution in LP PB1 reduced polymerase activity but did not affect pathogenicity in chickens. Interestingly, the V14A substitution reduced viral shedding and transmissibility. These studies demonstrate that increased polymerase activity correlates directly with enhanced pathogenicity, while decreased polymerase activity does not always correlate with pathogenicity and requires further analysis. IMPORTANCE: We identified 2 novel amino acid substitutions in the avian influenza virus PB1 gene that affect the characteristics of highly pathogenic avian influenza viruses (HPAIVs) of the H5N1 subtype, such as viral replication and polymerase activity in vitro and pathogenicity and transmissibly in chickens. An amino acid substitution at residue 38 in PB1 directly affected pathogenicity in chickens and was associated with changes in polymerase activity in vitro. A substitution at residue 14 reduced polymerase activity in vitro, while its effects on pathogenicity and transmissibility depended on the constellation of internal genes.


Asunto(s)
Sustitución de Aminoácidos , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Gripe Aviar/transmisión , Virus Reordenados/patogenicidad , Proteínas Virales/genética , Animales , Pollos , Subtipo H5N1 del Virus de la Influenza A/genética , Gripe Aviar/mortalidad , Gripe Aviar/virología , Virus Reordenados/genética , Análisis de Supervivencia , Carga Viral , Virulencia , Replicación Viral , Esparcimiento de Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA