Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Hered ; 2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37955431

RESUMEN

The gray wolf (Canis lupus) population on the Iberian Peninsula was the largest in western and central Europe during most of the 20th century, with its size apparently never under a few hundred individuals. After partial legal protection in the 1970s in Spain, the northwest Iberian population increased to about 300-350 packs and then stabilized. In contrast to many current European wolf populations, which have been connected through gene flow, the Iberian wolf population has been isolated for decades. Here we measured changes on genomic diversity and inbreeding through the last decades in a geographic context. We find that the level of genomic diversity in Iberian wolves is low compared to other Eurasian wolf populations. Despite population expansion in the last 50 years, some modern wolves had very high inbreeding, especially in the recently recolonized and historical edge areas. These individuals contrast with others with low inbreeding within the same population. The high variance in inbreeding despite population expansion seems associated with small-scale fragmentation of the range that is revealed by the genetic similarity between modern and historical samples from close localities despite being separated by decades, remaining differentiated from other individuals that are just over 100 km away, a small distance for a species with great dispersal capacity inhabiting a continuous range. This illustrates that, despite its demographically stable condition, the population would probably benefit from favoring connectivity within the population as well as genetic exchange with other European wolf populations to avoid excessive fragmentation and local inbreeding depression.

2.
Mol Ecol ; 30(23): 6340-6354, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34161633

RESUMEN

The endangered Mexican wolf (Canis lupus baileyi) is known to carry exceedingly low levels of genetic diversity. This could be (i) the result of long-term evolutionary patterns as they exist at the southernmost limit of the species distribution at a relatively reduced effective size, or (ii) due to rapid population decline caused by human persecution over the last century. If the former, purifying selection is expected to have minimized the impact of inbreeding. If the latter, rapid and recent declines in genetic diversity may have resulted in severe fitness consequences. To differentiate these hypotheses, we conducted comparative whole-genome analyses of five historical Mexican wolves (1907-1917) and 18 contemporary Mexican and grey wolves from North America and Eurasia. Based on whole-genome data, historical and modern Mexican wolves together form a discrete unit. Moreover, we found that modern Mexican wolves have reduced genetic diversity and increased inbreeding relative to the historical population, which was widespread across the southwestern United States and not restricted to Mexico as previously assumed. Finally, although Mexican wolves have evolved in sympatry with coyotes (C. latrans), we observed lower introgression between historical Mexican wolves and coyotes than with modern Mexican wolves, despite similarities in body size. Taken together, our data show that recent population declines probably caused the reduced level of genetic diversity, but not the observed differentiation of the Mexican wolves from other North American wolves.


Asunto(s)
Coyotes , Lobos , Animales , Coyotes/genética , Variación Genética , Genoma , México , Lobos/genética
3.
Genes (Basel) ; 14(1)2022 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-36672816

RESUMEN

Gray wolves (Canis lupus) in the Iberian Peninsula declined substantially in both range and population size in the last few centuries due to human persecution and habitat fragmentation. However, unlike many other western European populations, gray wolves never went extinct in Iberia. Since the minimum number was recorded around 1970, their numbers have significantly increased and then stabilized in recent decades. We analyzed mitochondrial genomes from 54 historical specimens of Iberian wolves from across their historical range using ancient DNA methods. We compared historical and current mitochondrial diversity in Iberian wolves at the 5' end of the control region (n = 17 and 27) and the whole mitochondrial genome excluding the control region (n = 19 and 29). Despite an increase in population size since the 1970s, genetic diversity declined. We identified 10 whole mitochondrial DNA haplotypes in 19 historical specimens, whereas only six of them were observed in 29 modern Iberian wolves. Moreover, a haplotype that was restricted to the southern part of the distribution has gone extinct. Our results illustrate a lag between demographic and genetic diversity changes, and show that after severe population declines, genetic diversity can continue to be lost in stable or even expanding populations. This suggests that such populations may be of conservation concern even after their demographic trajectory has been reversed.


Asunto(s)
Lobos , Humanos , Animales , Lobos/genética , Genética de Población , Crecimiento Demográfico , Europa (Continente) , Variación Genética/genética
4.
PLoS One ; 16(10): e0258906, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34695152

RESUMEN

Ecological and conservation genetic studies often use noninvasive sampling, especially with elusive or endangered species. Because microsatellites are generally short in length, they can be amplified from low quality samples such as feces. Microsatellites are highly polymorphic so few markers are enough for reliable individual identification, kinship determination, or population characterization. However, the genotyping process from feces is expensive and time consuming. Given next-generation sequencing (NGS) and recent software developments, automated microsatellite genotyping from NGS data may now be possible. These software packages infer the genotypes directly from sequence reads, increasing throughput. Here we evaluate the performance of four software packages to genotype microsatellite loci from Iberian wolf (Canis lupus) feces using NGS. We initially combined 46 markers in a single multiplex reaction for the first time, of which 19 were included in the final analyses. Megasat was the software that provided genotypes with fewer errors. Coverage over 100X provided little additional information, but a relatively high number of PCR replicates were necessary to obtain a high quality genotype from highly unoptimized, multiplexed reactions (10 replicates for 18 of the 19 loci analyzed here). This could be reduced through optimization. The use of new bioinformatic tools and next-generation sequencing data to genotype these highly informative markers may increase throughput at a reasonable cost and with a smaller amount of laboratory work. Thus, high throughput sequencing approaches could facilitate the use of microsatellites with fecal DNA to address ecological and conservation questions.


Asunto(s)
Heces , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Repeticiones de Microsatélite , Animales , Sitios Genéticos , Lobos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA