Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 274
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 583(7814): 96-102, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32581362

RESUMEN

Most patients with rare diseases do not receive a molecular diagnosis and the aetiological variants and causative genes for more than half such disorders remain to be discovered1. Here we used whole-genome sequencing (WGS) in a national health system to streamline diagnosis and to discover unknown aetiological variants in the coding and non-coding regions of the genome. We generated WGS data for 13,037 participants, of whom 9,802 had a rare disease, and provided a genetic diagnosis to 1,138 of the 7,065 extensively phenotyped participants. We identified 95 Mendelian associations between genes and rare diseases, of which 11 have been discovered since 2015 and at least 79 are confirmed to be aetiological. By generating WGS data of UK Biobank participants2, we found that rare alleles can explain the presence of some individuals in the tails of a quantitative trait for red blood cells. Finally, we identified four novel non-coding variants that cause disease through the disruption of transcription of ARPC1B, GATA1, LRBA and MPL. Our study demonstrates a synergy by using WGS for diagnosis and aetiological discovery in routine healthcare.


Asunto(s)
Internacionalidad , Programas Nacionales de Salud , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Secuenciación Completa del Genoma , Complejo 2-3 Proteico Relacionado con la Actina/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Alelos , Bases de Datos Factuales , Eritrocitos/metabolismo , Factor de Transcripción GATA1/genética , Humanos , Fenotipo , Sitios de Carácter Cuantitativo , Receptores de Trombopoyetina/genética , Medicina Estatal , Reino Unido
2.
Lancet ; 403(10433): 1279-1289, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38492578

RESUMEN

BACKGROUND: Individuals with rare kidney diseases account for 5-10% of people with chronic kidney disease, but constitute more than 25% of patients receiving kidney replacement therapy. The National Registry of Rare Kidney Diseases (RaDaR) gathers longitudinal data from patients with these conditions, which we used to study disease progression and outcomes of death and kidney failure. METHODS: People aged 0-96 years living with 28 types of rare kidney diseases were recruited from 108 UK renal care facilities. The primary outcomes were cumulative incidence of mortality and kidney failure in individuals with rare kidney diseases, which were calculated and compared with that of unselected patients with chronic kidney disease. Cumulative incidence and Kaplan-Meier survival estimates were calculated for the following outcomes: median age at kidney failure; median age at death; time from start of dialysis to death; and time from diagnosis to estimated glomerular filtration rate (eGFR) thresholds, allowing calculation of time from last eGFR of 75 mL/min per 1·73 m2 or more to first eGFR of less than 30 mL/min per 1·73 m2 (the therapeutic trial window). FINDINGS: Between Jan 18, 2010, and July 25, 2022, 27 285 participants were recruited to RaDaR. Median follow-up time from diagnosis was 9·6 years (IQR 5·9-16·7). RaDaR participants had significantly higher 5-year cumulative incidence of kidney failure than 2·81 million UK patients with all-cause chronic kidney disease (28% vs 1%; p<0·0001), but better survival rates (standardised mortality ratio 0·42 [95% CI 0·32-0·52]; p<0·0001). Median age at kidney failure, median age at death, time from start of dialysis to death, time from diagnosis to eGFR thresholds, and therapeutic trial window all varied substantially between rare diseases. INTERPRETATION: Patients with rare kidney diseases differ from the general population of individuals with chronic kidney disease: they have higher 5-year rates of kidney failure but higher survival than other patients with chronic kidney disease stages 3-5, and so are over-represented in the cohort of patients requiring kidney replacement therapy. Addressing unmet therapeutic need for patients with rare kidney diseases could have a large beneficial effect on long-term kidney replacement therapy demand. FUNDING: RaDaR is funded by the Medical Research Council, Kidney Research UK, Kidney Care UK, and the Polycystic Kidney Disease Charity.


Asunto(s)
Fallo Renal Crónico , Insuficiencia Renal Crónica , Insuficiencia Renal , Humanos , Tasa de Filtración Glomerular , Riñón , Fallo Renal Crónico/epidemiología , Fallo Renal Crónico/terapia , Fallo Renal Crónico/etiología , Radar , Enfermedades Raras , Sistema de Registros , Insuficiencia Renal/epidemiología , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/terapia , Insuficiencia Renal Crónica/complicaciones , Reino Unido/epidemiología , Recién Nacido , Lactante , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años
3.
Kidney Int ; 105(4): 744-758, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37995908

RESUMEN

Podocin is a key membrane scaffolding protein of the kidney podocyte essential for intact glomerular filtration. Mutations in NPHS2, the podocin-encoding gene, represent the commonest form of inherited nephrotic syndrome (NS), with early, intractable kidney failure. The most frequent podocin gene mutation in European children is R138Q, causing retention of the misfolded protein in the endoplasmic reticulum. Here, we provide evidence that podocin R138Q (but not wild-type podocin) complexes with the intermediate filament protein keratin 8 (K8) thereby preventing its correct trafficking to the plasma membrane. We have also identified a small molecule (c407), a compound that corrects the Cystic Fibrosis Transmembrane Conductance Regulator protein defect, that interrupts this complex and rescues mutant protein mistrafficking. This results in both the correct localization of podocin at the plasma membrane and functional rescue in both human patient R138Q mutant podocyte cell lines, and in a mouse inducible knock-in model of the R138Q mutation. Importantly, complete rescue of proteinuria and histological changes was seen when c407 was administered both via osmotic minipumps or delivered orally prior to induction of disease or crucially via osmotic minipump two weeks after disease induction. Thus, our data constitute a therapeutic option for patients with NS bearing a podocin mutation, with implications for other misfolding protein disorders. Further studies are necessary to confirm our findings.


Asunto(s)
Síndrome Nefrótico , Animales , Niño , Humanos , Ratones , Péptidos y Proteínas de Señalización Intracelular/genética , Queratina-8/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/genética , Mutación , Síndrome Nefrótico/tratamiento farmacológico , Síndrome Nefrótico/genética , Síndrome Nefrótico/patología
4.
Am J Hum Genet ; 108(2): 357-367, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33508234

RESUMEN

Focal segmental glomerulosclerosis (FSGS) is the main pathology underlying steroid-resistant nephrotic syndrome (SRNS) and a leading cause of chronic kidney disease. Monogenic forms of pediatric SRNS are predominantly caused by recessive mutations, while the contribution of de novo variants (DNVs) to this trait is poorly understood. Using exome sequencing (ES) in a proband with FSGS/SRNS, developmental delay, and epilepsy, we discovered a nonsense DNV in TRIM8, which encodes the E3 ubiquitin ligase tripartite motif containing 8. To establish whether TRIM8 variants represent a cause of FSGS, we aggregated exome/genome-sequencing data for 2,501 pediatric FSGS/SRNS-affected individuals and 48,556 control subjects, detecting eight heterozygous TRIM8 truncating variants in affected subjects but none in control subjects (p = 3.28 × 10-11). In all six cases with available parental DNA, we demonstrated de novo inheritance (p = 2.21 × 10-15). Reverse phenotyping revealed neurodevelopmental disease in all eight families. We next analyzed ES from 9,067 individuals with epilepsy, yielding three additional families with truncating TRIM8 variants. Clinical review revealed FSGS in all. All TRIM8 variants cause protein truncation clustering within the last exon between residues 390 and 487 of the 551 amino acid protein, indicating a correlation between this syndrome and loss of the TRIM8 C-terminal region. Wild-type TRIM8 overexpressed in immortalized human podocytes and neuronal cells localized to nuclear bodies, while constructs harboring patient-specific variants mislocalized diffusely to the nucleoplasm. Co-localization studies demonstrated that Gemini and Cajal bodies frequently abut a TRIM8 nuclear body. Truncating TRIM8 DNVs cause a neuro-renal syndrome via aberrant TRIM8 localization, implicating nuclear bodies in FSGS and developmental brain disease.


Asunto(s)
Proteínas Portadoras/genética , Discapacidades del Desarrollo/genética , Epilepsia/genética , Glomeruloesclerosis Focal y Segmentaria/genética , Espacio Intranuclear/metabolismo , Síndrome Nefrótico/genética , Síndrome Nefrótico/metabolismo , Proteínas del Tejido Nervioso/genética , Adulto , Animales , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Línea Celular , Niño , Preescolar , Codón sin Sentido , Discapacidades del Desarrollo/metabolismo , Epilepsia/metabolismo , Femenino , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Humanos , Riñón/metabolismo , Masculino , Ratones , Mutación , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Fenotipo , Podocitos/metabolismo , Secuenciación del Exoma
5.
Clin Proteomics ; 21(1): 34, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762513

RESUMEN

BACKGROUND: The early identification of patients at high-risk for end-stage renal disease (ESRD) is essential for providing optimal care and implementing targeted prevention strategies. While the Kidney Failure Risk Equation (KFRE) offers a more accurate prediction of ESRD risk compared to static eGFR-based thresholds, it does not provide insights into the patient-specific biological mechanisms that drive ESRD. This study focused on evaluating the effectiveness of KFRE in a UK-based advanced chronic kidney disease (CKD) cohort and investigating whether the integration of a proteomic signature could enhance 5-year ESRD prediction. METHODS: Using the Salford Kidney Study biobank, a UK-based prospective cohort of over 3000 non-dialysis CKD patients, 433 patients met our inclusion criteria: a minimum of four eGFR measurements over a two-year period and a linear eGFR trajectory. Plasma samples were obtained and analysed for novel proteomic signals using SWATH-Mass-Spectrometry. The 4-variable UK-calibrated KFRE was calculated for each patient based on their baseline clinical characteristics. Boruta machine learning algorithm was used for the selection of proteins most contributing to differentiation between patient groups. Logistic regression was employed for estimation of ESRD prediction by (1) proteomic features; (2) KFRE; and (3) proteomic features alongside KFRE. RESULTS: SWATH maps with 943 quantified proteins were generated and investigated in tandem with available clinical data to identify potential progression biomarkers. We identified a set of proteins (SPTA1, MYL6 and C6) that, when used alongside the 4-variable UK-KFRE, improved the prediction of 5-year risk of ESRD (AUC = 0.75 vs AUC = 0.70). Functional enrichment analysis revealed Rho GTPases and regulation of the actin cytoskeleton pathways to be statistically significant, inferring their role in kidney function and the pathogenesis of renal disease. CONCLUSIONS: Proteins SPTA1, MYL6 and C6, when used alongside the 4-variable UK-KFRE achieve an improved performance when predicting a 5-year risk of ESRD. Specific pathways implicated in the pathogenesis of podocyte dysfunction were also identified, which could serve as potential therapeutic targets. The findings of our study carry implications for comprehending the involvement of the Rho family GTPases in the pathophysiology of kidney disease, advancing our understanding of the proteomic factors influencing susceptibility to renal damage.

6.
Nucleic Acids Res ; 50(13): 7783-7799, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35801912

RESUMEN

CRISPR-based precise gene-editing requires simultaneous delivery of multiple components into living cells, rapidly exceeding the cargo capacity of traditional viral vector systems. This challenge represents a major roadblock to genome engineering applications. Here we exploit the unmatched heterologous DNA cargo capacity of baculovirus to resolve this bottleneck in human cells. By encoding Cas9, sgRNA and Donor DNAs on a single, rapidly assembled baculoviral vector, we achieve with up to 30% efficacy whole-exon replacement in the intronic ß-actin (ACTB) locus, including site-specific docking of very large DNA payloads. We use our approach to rescue wild-type podocin expression in steroid-resistant nephrotic syndrome (SRNS) patient derived podocytes. We demonstrate single baculovirus vectored delivery of single and multiplexed prime-editing toolkits, achieving up to 100% cleavage-free DNA search-and-replace interventions without detectable indels. Taken together, we provide a versatile delivery platform for single base to multi-gene level genome interventions, addressing the currently unmet need for a powerful delivery system accommodating current and future CRISPR technologies without the burden of limited cargo capacity.


Asunto(s)
Baculoviridae , Sistemas CRISPR-Cas , Baculoviridae/genética , Sistemas CRISPR-Cas/genética , ADN/genética , Edición Génica , Vectores Genéticos , Humanos
7.
J Am Soc Nephrol ; 34(1): 88-109, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36167728

RESUMEN

BACKGROUND: NPHS2 variants are the most common cause of steroid-resistant nephrotic syndrome in children >1 month old. Missense NPHS2 variants were reported to cause mistrafficking of the encoded protein, PODOCIN, but this conclusion was on the basis of overexpression in some nonpodocyte cell lines. METHODS: We generated a series of human induced pluripotent stem cell (iPSC) lines bearing pathogenic missense variants of NPHS2 , encoding the protein changes p.G92C, p.P118L, p.R138Q, p.R168H, and p.R291W, and control lines. iPSC lines were also generated from a patient with steroid-resistant nephrotic syndrome (p.R168H homozygote) and a healthy heterozygous parent. All lines were differentiated into kidney organoids. Immunofluorescence assessed PODOCIN expression and subcellular localization. Podocytes were transcriptionally profiled and PODOCIN-NEPHRIN interaction interrogated. RESULTS: All variant lines revealed reduced levels of PODOCIN protein in the absence of reduced transcription. Although wild-type PODOCIN localized to the membrane, distinct variant proteins displayed unique patterns of subcellular protein trafficking, some unreported. P118L and R138Q were preferentially retained in the endoplasmic reticulum (ER); R168H and R291W accumulated in the Golgi. Podocyte profiling demonstrated minimal disease-associated transcriptional change. All variants displayed podocyte-specific apoptosis, which was not linked to ER stress. NEPHRIN-PODOCIN colocalization elucidated the variant-specific effect on NEPHRIN association and hence NEPHRIN trafficking. CONCLUSIONS: Specific variants of endogenous NPHS2 result in distinct subcellular PODOCIN localization within organoid podocytes. Understanding the effect of each variant on protein levels and localization and the effect on NEPHRIN provides additional insight into the pathobiology of NPHS2 variants. PODCAST: This article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/JASN/2023_01_05_JASN2022060707.mp3.


Asunto(s)
Células Madre Pluripotentes Inducidas , Síndrome Nefrótico , Niño , Humanos , Lactante , Síndrome Nefrótico/genética , Síndrome Nefrótico/metabolismo , Riñón/metabolismo , Mutación
8.
J Cell Physiol ; 238(8): 1921-1936, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37269459

RESUMEN

Podocytes are crucially involved in blood filtration in the glomerulus. Their proper function relies on efficient insulin responsiveness. The insulin resistance of podocytes, defined as a reduction of cell sensitivity to this hormone, is the earliest pathomechanism of microalbuminuria that is observed in metabolic syndrome and diabetic nephropathy. In many tissues, this alteration is mediated by the phosphate homeostasis-controlling enzyme nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1). By binding to the insulin receptor (IR), NPP1 inhibits downstream cellular signaling. Our previous research found that hyperglycemic conditions affect another protein that is involved in phosphate balance, type III sodium-dependent phosphate transporter 1 (Pit 1). In the present study, we evaluated the insulin resistance of podocytes after 24 h of incubation under hyperinsulinemic conditions. Thereafter, insulin signaling was inhibited. The formation of NPP1/IR complexes was observed at that time. A novel finding in the present study was our observation of an interaction between NPP1 and Pit 1 after the 24 h stimulation of podocytes with insulin. After downregulation of the SLC20A1 gene, which encodes Pit 1, we established insulin resistance in podocytes that were cultured under native conditions, manifested as a lack of intracellular insulin signaling and the inhibition of glucose uptake via the glucose transporter type 4. These findings suggest that Pit 1 might be a major factor that participates in the NPP1-mediated inhibition of insulin signaling.


Asunto(s)
Nefropatías Diabéticas , Resistencia a la Insulina , Podocitos , Humanos , Insulina/farmacología , Insulina/metabolismo , Podocitos/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Nefropatías Diabéticas/metabolismo , Fosfatos/metabolismo , Glucosa/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/metabolismo
9.
Kidney Int ; 104(2): 265-278, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36940798

RESUMEN

About 30% of patients who have a kidney transplant with underlying nephrotic syndrome (NS) experience rapid relapse of disease in their new graft. This is speculated to be due to a host-derived circulating factor acting on podocytes, the target cells in the kidney, leading to focal segmental glomerulosclerosis (FSGS). Our previous work suggests that podocyte membrane protease receptor 1 (PAR-1) is activated by a circulating factor in relapsing FSGS. Here, the role of PAR-1 was studied in human podocytes in vitro, and using a mouse model with developmental or inducible expression of podocyte-specific constitutively active PAR-1, and using biopsies from patients with nephrotic syndrome. In vitro podocyte PAR-1 activation caused a pro-migratory phenotype with phosphorylation of the kinase JNK, VASP protein and docking protein Paxillin. This signaling was mirrored in podocytes exposed to patient relapse-derived NS plasma and in patient disease biopsies. Both developmental and inducible activation of transgenic PAR-1 (NPHS2 Cre PAR-1Active+/-) caused early severe nephrotic syndrome, FSGS, kidney failure and, in the developmental model, premature death. We found that the non-selective cation channel protein TRPC6 could be a key modulator of PAR-1 signaling and TRPC6 knockout in our mouse model significantly improved proteinuria and extended lifespan. Thus, our work implicates podocyte PAR-1 activation as a key initiator of human NS circulating factor and that the PAR-1 signaling effects were partly modulated through TRPC6.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Síndrome Nefrótico , Podocitos , Animales , Humanos , Podocitos/patología , Síndrome Nefrótico/patología , Glomeruloesclerosis Focal y Segmentaria/patología , Canal Catiónico TRPC6/metabolismo , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Modelos Animales de Enfermedad , Recurrencia
10.
EMBO J ; 38(19): e101704, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31429971

RESUMEN

The TRAnsport Protein Particle (TRAPP) complex controls multiple membrane trafficking steps and is strategically positioned to mediate cell adaptation to diverse environmental conditions, including acute stress. We have identified the TRAPP complex as a component of a branch of the integrated stress response that impinges on the early secretory pathway. The TRAPP complex associates with and drives the recruitment of the COPII coat to stress granules (SGs) leading to vesiculation of the Golgi complex and arrest of ER export. The relocation of the TRAPP complex and COPII to SGs only occurs in cycling cells and is CDK1/2-dependent, being driven by the interaction of TRAPP with hnRNPK, a CDK substrate that associates with SGs when phosphorylated. In addition, CDK1/2 inhibition impairs TRAPP complex/COPII relocation to SGs while stabilizing them at ER exit sites. Importantly, the TRAPP complex controls the maturation of SGs. SGs that assemble in TRAPP-depleted cells are smaller and are no longer able to recruit RACK1 and Raptor, two TRAPP-interactive signaling proteins, sensitizing cells to stress-induced apoptosis.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Estrés Fisiológico , Animales , Proteína Quinasa CDC2/metabolismo , Línea Celular , Quinasa 2 Dependiente de la Ciclina/metabolismo , Retículo Endoplásmico/metabolismo , Células HeLa , Humanos , Ratas
11.
Clin Proteomics ; 20(1): 19, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37076799

RESUMEN

BACKGROUND: Halting progression of chronic kidney disease (CKD) to established end stage kidney disease is a major goal of global health research. The mechanism of CKD progression involves pro-inflammatory, pro-fibrotic, and vascular pathways, but pathophysiological differentiation is currently lacking. METHODS: Plasma samples of 414 non-dialysis CKD patients, 170 fast progressors (with ∂ eGFR-3 ml/min/1.73 m2/year or worse) and 244 stable patients (∂ eGFR of - 0.5 to + 1 ml/min/1.73 m2/year) with a broad range of kidney disease aetiologies, were obtained and interrogated for proteomic signals with SWATH-MS. We applied a machine learning approach to feature selection of proteins quantifiable in at least 20% of the samples, using the Boruta algorithm. Biological pathways enriched by these proteins were identified using ClueGo pathway analyses. RESULTS: The resulting digitised proteomic maps inclusive of 626 proteins were investigated in tandem with available clinical data to identify biomarkers of progression. The machine learning model using Boruta Feature Selection identified 25 biomarkers as being important to progression type classification (Area Under the Curve = 0.81, Accuracy = 0.72). Our functional enrichment analysis revealed associations with the complement cascade pathway, which is relevant to CKD as the kidney is particularly vulnerable to complement overactivation. This provides further evidence to target complement inhibition as a potential approach to modulating the progression of diabetic nephropathy. Proteins involved in the ubiquitin-proteasome pathway, a crucial protein degradation system, were also found to be significantly enriched. CONCLUSIONS: The in-depth proteomic characterisation of this large-scale CKD cohort is a step toward generating mechanism-based hypotheses that might lend themselves to future drug targeting. Candidate biomarkers will be validated in samples from selected patients in other large non-dialysis CKD cohorts using a targeted mass spectrometric analysis.

12.
Nephrol Dial Transplant ; 38(11): 2617-2626, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37230953

RESUMEN

BACKGROUND: Chronic kidney disease (CKD) is common but heterogenous and is associated with multiple adverse outcomes. The National Unified Renal Translational Research Enterprise (NURTuRE)-CKD cohort was established to investigate risk factors for clinically important outcomes in persons with CKD referred to secondary care. METHODS: Eligible participants with CKD stages G3-4 or stages G1-2 plus albuminuria >30 mg/mmol were enrolled from 16 nephrology centres in England, Scotland and Wales from 2017 to 2019. Baseline assessment included demographic data, routine laboratory data and research samples. Clinical outcomes are being collected over 15 years by the UK Renal Registry using established data linkage. Baseline data are presented with subgroup analysis by age, sex and estimated glomerular filtration rate (eGFR). RESULTS: A total of 2996 participants was enrolled. Median (interquartile range) age was 66 (54-74) years, eGFR 33.8 (24.0-46.6) mL/min/1.73 m2 and urine albumin to creatinine ratio 209 (33-926) mg/g; 58.5% were male. Of these participants, 1883 (69.1%) were in high-risk CKD categories. Primary renal diagnosis was CKD of unknown cause in 32.3%, glomerular disease in 23.4% and diabetic kidney disease in 11.5%. Older participants and those with lower eGFR had higher systolic blood pressure and were less likely to be treated with renin-angiotensin system inhibitors (RASi) but were more likely to receive a statin. Female participants were less likely to receive a RASi or statin. CONCLUSIONS: NURTuRE-CKD is a prospective cohort of persons who are at relatively high risk of adverse outcomes. Long-term follow-up and a large biorepository create opportunities for research to improve risk prediction and to investigate underlying mechanisms to inform new treatment development.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Insuficiencia Renal Crónica , Masculino , Humanos , Femenino , Anciano , Tasa de Filtración Glomerular , Estudios Prospectivos , Insuficiencia Renal Crónica/etiología , Insuficiencia Renal Crónica/complicaciones , Factores de Riesgo , Inglaterra , Albuminuria/epidemiología
13.
Pediatr Nephrol ; 38(11): 3513-3518, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36952039

RESUMEN

Nephrotic syndrome (NS) consists of the clinical triad of hypoalbuminaemia, high levels of proteinuria and oedema, and describes a heterogeneous group of disease processes with different underlying drivers. The existence of circulating factor disease (CFD) as a driver of NS has been epitomised by a subset of patients who exhibit disease recurrence after transplantation, alongside laboratory work. Several circulating factors have been proposed and studied, broadly grouped into protease components such as soluble urokinase-type plasminogen activator (suPAR), hemopexin (Hx) and calcium/calmodulin-serine protease kinase (CASK), and other circulating proteases, and immune components such as TNF-α, CD40 and cardiotrophin-like cytokine-1 (CLC-1). While currently there is no definitive way of assessing risk of CFD pre-transplantation, promising work is emerging through the study of 'multi-omic' bioinformatic data from large national cohorts and biobanks.


Asunto(s)
Síndrome Nefrótico , Humanos , Proteinuria , Receptores del Activador de Plasminógeno Tipo Uroquinasa
14.
Pediatr Nephrol ; 38(6): 1793-1800, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36357634

RESUMEN

BACKGROUND: Idiop athic nephrotic syndrome (INS) is classified in children according to response to initial corticosteroid therapy into steroid-sensitive (SSNS) and steroid-resistant nephrotic syndrome (SRNS), and in adults according to histology into minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS). However, there is well-recognised phenotypic overlap between these entities. Genome-wide association studies (GWAS) have shown a strong association between SSNS and variation at HLA, suggesting an underlying immunological basis. We sought to determine whether a risk score generated from genetic variants associated with SSNS could be used to gain insight into the pathophysiology of INS presenting in other ways. METHODS: We developed an SSNS genetic risk score (SSNS-GRS) from the five variants independently associated with childhood SSNS in a previous European GWAS. We quantified SSNS-GRS in independent cohorts of European individuals with childhood SSNS, non-monogenic SRNS, MCD, and FSGS, and contrasted them with SSNS-GRS quantified in individuals with monogenic SRNS, membranous nephropathy (a different immune-mediated disease-causing nephrotic syndrome), and healthy controls. RESULTS: The SSNS-GRS was significantly elevated in cohorts with SSNS, non-monogenic SRNS, MCD, and FSGS compared to healthy participants and those with membranous nephropathy. The SSNS-GRS in all cohorts with non-monogenic INS were also significantly elevated compared to those with monogenic SRNS. CONCLUSIONS: The shared genetic risk factors among patients with different presentations of INS strongly suggests a shared autoimmune pathogenesis when monogenic causes are excluded. Use of the SSNS-GRS, in addition to testing for monogenic causes, may help to classify patients presenting with INS. A higher resolution version of the Graphical abstract is available as Supplementary information.


Asunto(s)
Glomerulonefritis Membranosa , Glomeruloesclerosis Focal y Segmentaria , Nefrosis Lipoidea , Síndrome Nefrótico , Niño , Humanos , Síndrome Nefrótico/diagnóstico , Síndrome Nefrótico/tratamiento farmacológico , Síndrome Nefrótico/genética , Nefrosis Lipoidea/diagnóstico , Nefrosis Lipoidea/tratamiento farmacológico , Nefrosis Lipoidea/genética , Glomeruloesclerosis Focal y Segmentaria/diagnóstico , Glomeruloesclerosis Focal y Segmentaria/tratamiento farmacológico , Glomeruloesclerosis Focal y Segmentaria/genética , Estudio de Asociación del Genoma Completo , Esteroides , Factores de Riesgo
15.
Int J Mol Sci ; 24(21)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37958836

RESUMEN

Fabry disease is a lysosomal disease characterized by globotriaosylceramide (Gb3) accumulation. It may coexist with diabetes mellitus and both cause potentially lethal kidney end-organ damage. However, there is little information on their interaction with kidney disease. We have addressed the interaction between Fabry disease and diabetes in data mining of human kidney transcriptomics databases and in Fabry (Gla-/-) and wild type mice with or without streptozotocin-induced diabetes. Data mining was consistent with differential expression of genes encoding enzymes from the Gb3 metabolic pathway in human diabetic kidney disease, including upregulation of UGCG, the gene encoding the upstream and rate-limiting enzyme glucosyl ceramide synthase. Diabetic Fabry mice displayed the most severe kidney infiltration by F4/80+ macrophages, and a lower kidney expression of kidney protective genes (Pgc1α and Tfeb) than diabetic wild type mice, without a further increase in kidney fibrosis. Moreover, only diabetic Fabry mice developed kidney insufficiency and these mice with kidney insufficiency had a high expression of Ugcg. In conclusion, we found evidence of interaction between diabetes and Fabry disease that may increase the severity of the kidney phenotype through modulation of the Gb3 synthesis pathway and downregulation of kidney protective genes.


Asunto(s)
Diabetes Mellitus , Enfermedad de Fabry , Enfermedades Renales , Insuficiencia Renal , Humanos , Ratones , Animales , Enfermedad de Fabry/metabolismo , Factores Protectores , Riñón/metabolismo , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Insuficiencia Renal/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Trihexosilceramidas/metabolismo , alfa-Galactosidasa/genética
16.
J Cell Physiol ; 237(5): 2478-2491, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35150131

RESUMEN

Soft tissue calcification is a pathological phenomenon that often occurs in end-stage chronic kidney disease (CKD), which is caused by diabetic nephropathy, among other factors. Hyperphosphatemia present during course of CKD contributes to impairments in kidney function, particularly damages in the glomerular filtration barrier (GFB). Essential elements of the GFB include glomerular epithelial cells, called podocytes. In the present study, we found that human immortalized podocytes express messenger RNA and protein of phosphate transporters, including NaPi 2c (SLC34A3), Pit 1 (SLC20A1), and Pit 2 (SLC20A2), which are sodium-dependent and mediate intracellular phosphate (Pi) transport, and XPR1, which is responsible for extracellular Pi transport. We found that cells that were grown in a medium with a high glucose (HG) concentration (30 mM) expressed less Pit 1 and Pit 2 protein than podocytes that were cultured in a standard glucose medium (11 mM). We found that exposure of the analyzed transporters in the cell membrane of the podocyte is altered by HG conditions. We also found that the activity of tissue nonspecific alkaline phosphatase increased in HG, causing a rise in Pi generation. Additionally, HG led to a reduction of the amount of ectonucleotide pyrophosphatase/phosphodiesterase 1 in the cell membrane of podocytes. The extracellular concentration of pyrophosphate also decreased under HG conditions. These data suggest that a hyperglycemic environment enhances the production of Pi in podocytes and its retention in the extracellular space, which may induce glomerular calcification.


Asunto(s)
Calcinosis , Podocitos , Insuficiencia Renal Crónica , Calcinosis/metabolismo , Glucosa/metabolismo , Humanos , Glomérulos Renales/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Podocitos/metabolismo , Insuficiencia Renal Crónica/patología , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/metabolismo
17.
Am J Hum Genet ; 104(2): 348-355, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30661770

RESUMEN

Steroid-resistant nephrotic syndrome (SRNS) is characterized by high-range proteinuria and most often focal and segmental glomerulosclerosis (FSGS). Identification of mutations in genes causing SRNS has improved our understanding of disease mechanisms and highlighted defects in the podocyte, a highly specialized glomerular epithelial cell, as major factors in disease pathogenesis. By exome sequencing, we identified missense mutations in TBC1D8B in two families with an X-linked early-onset SRNS with FSGS. TBC1D8B is an uncharacterized Rab-GTPase-activating protein likely involved in endocytic and recycling pathways. Immunofluorescence studies revealed TBC1D8B presence in human glomeruli, and affected individual podocytes displayed architectural changes associated with migration defects commonly found in FSGS. In zebrafish we demonstrated that both knockdown and knockout of the unique TBC1D8B ortholog-induced proteinuria and that this phenotype was rescued by human TBC1D8B mRNA injection, but not by either of the two mutated mRNAs. We also showed an interaction between TBC1D8B and Rab11b, a key protein in vesicular recycling in cells. Interestingly, both internalization and recycling processes were dramatically decreased in affected individuals' podocytes and fibroblasts, confirming the crucial role of TBC1D8B in the cellular recycling processes, probably as a Rab11b GTPase-activating protein. Altogether, these results confirmed that pathogenic variations in TBC1D8B are involved in X-linked podocytopathy and points to alterations in recycling processes as a mechanism of SRNS.


Asunto(s)
Proteínas de Unión al Calcio/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Mutación con Pérdida de Función , Síndrome Nefrótico/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Pez Cebra/genética , Animales , Transporte Biológico/genética , Proteínas de Unión al Calcio/metabolismo , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Glomérulos Renales/metabolismo , Masculino , Podocitos/citología , Podocitos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Secuenciación del Exoma , Pez Cebra , Proteínas de Pez Cebra/metabolismo , Proteínas de Unión al GTP rab/metabolismo
18.
Exp Cell Res ; 407(1): 112758, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34437881

RESUMEN

Podocytes constitute the outer layer of the renal glomerular filtration barrier. Their energy requirements strongly depend on efficient oxidative respiration, which is tightly connected with mitochondrial dynamics. We hypothesized that hyperglycemia modulates energy metabolism in glomeruli and podocytes and contributes to the development of diabetic kidney disease. We found that oxygen consumption rates were severely reduced in glomeruli from diabetic rats and in human podocytes that were cultured in high glucose concentration (30 mM; HG). In these models, all of the mitochondrial respiratory parameters, including basal and maximal respiration, ATP production, and spare respiratory capacity, were significantly decreased. Podocytes that were treated with HG showed a fragmented mitochondrial network, together with a decrease in expression of the mitochondrial fusion markers MFN1, MFN2, and OPA1, and an increase in the activity of the fission marker DRP1. We showed that markers of mitochondrial biogenesis, such as PGC-1α and TFAM, decreased in HG-treated podocytes. Moreover, PINK1/parkin-dependent mitophagy was inhibited in these cells. These results provide evidence that hyperglycemia impairs mitochondrial dynamics and turnover, which may underlie the remarkable deterioration of mitochondrial respiration parameters in glomeruli and podocytes.


Asunto(s)
Hiperglucemia/metabolismo , Mitocondrias/metabolismo , Mitofagia/fisiología , Podocitos/metabolismo , Animales , Diabetes Mellitus Experimental/metabolismo , Humanos , Riñón/metabolismo , Masculino , Proteínas Quinasas/metabolismo , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
19.
Pediatr Nephrol ; 37(11): 2643-2656, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35211795

RESUMEN

BACKGROUND: Variants in genes encoding nuclear pore complex (NPC) proteins are a newly identified cause of paediatric steroid-resistant nephrotic syndrome (SRNS). Recent reports describing NUP93 variants suggest these could be a significant cause of paediatric onset SRNS. We report NUP93 cases in the UK and demonstrate in vivo functional effects of Nup93 depletion in a fly (Drosophila melanogaster) nephrocyte model. METHODS: Three hundred thirty-seven paediatric SRNS patients from the National cohort of patients with Nephrotic Syndrome (NephroS) were whole exome and/or whole genome sequenced. Patients were screened for over 70 genes known to be associated with Nephrotic Syndrome (NS). D. melanogaster Nup93 knockdown was achieved by RNA interference using nephrocyte-restricted drivers. RESULTS: Six novel homozygous and compound heterozygous NUP93 variants were detected in 3 sporadic and 2 familial paediatric onset SRNS characterised histologically by focal segmental glomerulosclerosis (FSGS) and progressing to kidney failure by 12 months from clinical diagnosis. Silencing of the two orthologs of human NUP93 expressed in D. melanogaster, Nup93-1, and Nup93-2 resulted in significant signal reduction of up to 82% in adult pericardial nephrocytes with concomitant disruption of NPC protein expression. Additionally, nephrocyte morphology was highly abnormal in Nup93-1 and Nup93-2 silenced flies surviving to adulthood. CONCLUSION: We expand the spectrum of NUP93 variants detected in paediatric onset SRNS and demonstrate its incidence within a national cohort. Silencing of either D. melanogaster Nup93 ortholog caused a severe nephrocyte phenotype, signaling an important role for the nucleoporin complex in podocyte biology. A higher resolution version of the Graphical abstract is available as Supplementary information.


Asunto(s)
Drosophila melanogaster , Síndrome Nefrótico , Proteínas de Complejo Poro Nuclear , Podocitos , Adulto , Animales , Niño , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Resistencia a Medicamentos/genética , Glucocorticoides/efectos adversos , Glucocorticoides/uso terapéutico , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación , Síndrome Nefrótico/tratamiento farmacológico , Síndrome Nefrótico/genética , Síndrome Nefrótico/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Podocitos/metabolismo
20.
J Am Soc Nephrol ; 32(7): 1682-1695, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33863784

RESUMEN

BACKGROUND: Podocyte dysfunction is the main pathologic mechanism driving the development of FSGS and other morphologic types of steroid-resistant nephrotic syndrome (SRNS). Despite significant progress, the genetic causes of most cases of SRNS have yet to be identified. METHODS: Whole-genome sequencing was performed on 320 individuals from 201 families with familial and sporadic NS/FSGS with no pathogenic mutations in any known NS/FSGS genes. RESULTS: Two variants in the gene encoding regulator of calcineurin type 1 (RCAN1) segregate with disease in two families with autosomal dominant FSGS/SRNS. In vitro, loss of RCAN1 reduced human podocyte viability due to increased calcineurin activity. Cells expressing mutant RCAN1 displayed increased calcineurin activity and NFAT activation that resulted in increased susceptibility to apoptosis compared with wild-type RCAN1. Treatment with GSK-3 inhibitors ameliorated this elevated calcineurin activity, suggesting the mutation alters the balance of RCAN1 regulation by GSK-3ß, resulting in dysregulated calcineurin activity and apoptosis. CONCLUSIONS: These data suggest mutations in RCAN1 can cause autosomal dominant FSGS. Despite the widespread use of calcineurin inhibitors in the treatment of NS, genetic mutations in a direct regulator of calcineurin have not been implicated in the etiology of NS/FSGS before this report. The findings highlight the therapeutic potential of targeting RCAN1 regulatory molecules, such as GSK-3ß, in the treatment of FSGS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA