Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ann Bot ; 128(7): 849-858, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34355736

RESUMEN

BACKGROUND AND AIMS: The utility of root hairs for nitrogen (N) acquisition is poorly understood. METHODS: We explored the utility of root hairs for N acquisition in the functional-structural model SimRoot and with maize genotypes with variable root hair length (RHL) in greenhouse and field environments. KEY RESULTS: Simulation results indicate that long, dense root hairs can improve N acquisition under varying N availability. In the greenhouse, ammonium availability had no effect on RHL and low nitrate availability increased RHL, while in the field low N reduced RHL. Longer RHL was associated with 216 % increase in biomass and 237 % increase in plant N content under low-N conditions in the greenhouse and a 250 % increase in biomass and 200 % increase in plant N content in the field compared with short-RHL phenotypes. In a low-N field environment, genotypes with long RHL had 267 % greater yield than those with short RHL. We speculate that long root hairs improve N capture by increased root surface area and expanded soil exploration beyond the N depletion zone surrounding the root surface. CONCLUSIONS: We conclude that root hairs play an important role in N acquisition. We suggest that root hairs merit consideration as a breeding target for improved N acquisition in maize and other crops.


Asunto(s)
Nitrógeno , Zea mays , Fenotipo , Fitomejoramiento , Raíces de Plantas/genética , Suelo , Zea mays/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA