Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Cell ; 79(6): 1051-1065.e10, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32877643

RESUMEN

Mitochondria contain their own gene expression systems, including membrane-bound ribosomes dedicated to synthesizing a few hydrophobic subunits of the oxidative phosphorylation (OXPHOS) complexes. We used a proximity-dependent biotinylation technique, BioID, coupled with mass spectrometry to delineate in baker's yeast a comprehensive network of factors involved in biogenesis of mitochondrial encoded proteins. This mitochondrial gene expression network (MiGENet) encompasses proteins involved in transcription, RNA processing, translation, or protein biogenesis. Our analyses indicate the spatial organization of these processes, thereby revealing basic mechanistic principles and the proteins populating strategically important sites. For example, newly synthesized proteins are directly handed over to ribosomal tunnel exit-bound factors that mediate membrane insertion, co-factor acquisition, or their mounting into OXPHOS complexes in a special early assembly hub. Collectively, the data reveal the connectivity of mitochondrial gene expression, reflecting a unique tailoring of the mitochondrial gene expression system.


Asunto(s)
Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas Ribosómicas/genética , Proteínas de Saccharomyces cerevisiae/genética , Regulación Fúngica de la Expresión Génica , Proteínas de la Membrana/genética , Fosforilación Oxidativa , Biosíntesis de Proteínas/genética , Saccharomyces cerevisiae/genética
2.
Mol Cell ; 77(4): 887-900.e5, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31883951

RESUMEN

The mitochondrial oxidative phosphorylation system comprises complexes assembled from subunits derived from mitochondrial and nuclear gene expression. Both genetic systems are coordinated by feedback loops, which control the synthesis of specific mitochondrial encoded subunits. Here, we studied how this occurs in the case of cytochrome b, a key subunit of mitochondrial complex III. Our data suggest the presence of a molecular rheostat consisting of two translational activators, Cbp3-Cbp6 and Cbs1, which operates at the mitoribosomal tunnel exit to connect translational output with assembly efficiency. When Cbp3-Cbp6 is engaged in assembly of cytochrome b, Cbs1 binds to the tunnel exit to sequester the cytochrome b-encoding mRNA, repressing its translation. After mediating complex III assembly, binding of Cbp3-Cbp6 to the tunnel exit replaces Cbs1 and the bound mRNA to permit cytochrome b synthesis. Collectively, the data indicate the molecular wiring of a feedback loop to regulate synthesis of a mitochondrial encoded protein.


Asunto(s)
Regulación de la Expresión Génica , Mitocondrias/genética , Proteínas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Citocromos b/biosíntesis , Citocromos b/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Chaperonas Moleculares/metabolismo , ARN Mensajero/análisis , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transactivadores/metabolismo
3.
STAR Protoc ; 1(3): 100219, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33377112

RESUMEN

Proximity-dependent biotin identification (BioID) permits biotinylation of proteins interacting directly, indirectly, or just localized in proximity of a protein of interest (bait). Here, we describe how BioID coupled to proteomics and network biology can be used to map protein proximities in yeast mitochondria, aiding in visualization of complex protein-protein interaction landscapes. For complete information on the use and execution of this protocol, please refer to Singh et al., 2020.


Asunto(s)
Mitocondrias/metabolismo , Mapeo de Interacción de Proteínas/métodos , Proteómica/métodos , Biotina/química , Biotina/metabolismo , Biotinilación/métodos , Biología Computacional/métodos , Mitocondrias/fisiología , Unión Proteica/fisiología , Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo
4.
J Mol Biol ; 430(21): 3892-3905, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-29733856

RESUMEN

The oxidative phosphorylation system contains four respiratory chain complexes that connect the transport of electrons to oxygen with the establishment of an electrochemical gradient over the inner membrane for ATP synthesis. Due to the dual genetic source of the respiratory chain subunits, its assembly requires a tight coordination between nuclear and mitochondrial gene expression machineries. In addition, dedicated assembly factors support the step-by-step addition of catalytic and accessory subunits as well as the acquisition of redox cofactors. Studies in yeast have revealed the basic principles underlying the assembly pathways. In this review, we summarize work on the biogenesis of the bc1 complex or complex III, a central component of the mitochondrial energy conversion system.


Asunto(s)
Respiración de la Célula , Complejo III de Transporte de Electrones/metabolismo , Transporte de Electrón , Mitocondrias/metabolismo , Animales , Complejo III de Transporte de Electrones/química , Humanos , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa , Unión Proteica , Subunidades de Proteína/metabolismo , Relación Estructura-Actividad
5.
Cell Death Dis ; 9(2): 80, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29362422

RESUMEN

Despite recent achievements implicating caspase-2 in tumor suppression, the enzyme stands out from the apoptotic caspase family as a factor whose function requires further clarification. To specify enzyme characteristics through the definition of interacting proteins in apoptotic or non-apoptotic settings, a yeast 2-hybrid (Y2H) screen was performed using the full-length protein as bait. The current report describes the analysis of a captured prey and putative novel caspase-2 interacting factor, the regulatory factor X-associated ankyrin-containing protein (RFXANK), previously associated with CIITA, the transactivator regulating cell-type specificity and inducibility of MHC class II gene expression. The interaction between caspase-2 and RFXANK was verified by co-immunoprecipitations using both exogenous and endogenous proteins, where the latter approach suggested that binding of the components occurs in the cytoplasm. Cellular co-localization was confirmed by transfection of fluorescently conjugated proteins. Enhanced caspase-2 processing in RFXANK-overexpressing HEK293T cells treated with chemotherapeutic agents further supported Y2H data. Yet, no distinct differences with respect to MHC class II expression were observed in plasma membranes of antigen-presenting cells derived from wild type and caspase-2-/- mice. In contrast, increased levels of the total MHC class II protein was evident in protein lysates from caspase-2 RNAi-silenced leukemia cell lines and B-cells isolated from gene-targeted mice. Together, these data identify a novel caspase-2-interacting factor, RFXANK, and indicate a potential non-apoptotic role for the enzyme in the control of MHC class II gene regulation.


Asunto(s)
Caspasa 2/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo , Factores de Transcripción/metabolismo , Animales , Células Sanguíneas/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Proteínas de Unión al ADN , Doxorrubicina/farmacología , Fluorouracilo/farmacología , Células HCT116 , Células HEK293 , Humanos , Ratones Endogámicos C57BL , Unión Proteica , Proteolisis , Reproducibilidad de los Resultados , Saccharomyces cerevisiae , Técnicas del Sistema de Dos Híbridos
6.
Sci Rep ; 6: 18749, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26728900

RESUMEN

The mitochondrial genome almost exclusively encodes a handful of transmembrane constituents of the oxidative phosphorylation (OXPHOS) system. Coordinated expression of these genes ensures the correct stoichiometry of the system's components. Translation initiation in mitochondria is assisted by two general initiation factors mIF2 and mIF3, orthologues of which in bacteria are indispensible for protein synthesis and viability. mIF3 was thought to be absent in Saccharomyces cerevisiae until we recently identified mitochondrial protein Aim23 as the missing orthologue. Here we show that, surprisingly, loss of mIF3/Aim23 in S. cerevisiae does not indiscriminately abrogate mitochondrial translation but rather causes an imbalance in protein production: the rate of synthesis of the Atp9 subunit of F1F0 ATP synthase (complex V) is increased, while expression of Cox1, Cox2 and Cox3 subunits of cytochrome c oxidase (complex IV) is repressed. Our results provide one more example of deviation of mitochondrial translation from its bacterial origins.


Asunto(s)
Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Biosíntesis de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Carbono/metabolismo , Respiración de la Célula , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Ribosomas Mitocondriales/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA