Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Carcinog ; 56(3): 923-935, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27585244

RESUMEN

Alternative lengthening of telomeres (ALT) is a telomere maintenance mechanism (TMM) found in some human tumors such as sarcomas. Canine tumors are not characterized for ALT and the study aim was to identify if the ALT phenotype exists in canine sarcomas. Sixty-four canine sarcoma samples (20 snap-frozen, 44 FFPE) as well as six canine sarcoma cell lines were screened for ALT by C-circle assay. ALT was further evaluated by measuring telomere length via qPCR and telomere restriction-fragments including pulsed-field electrophoresis. ALT-associated proteins were validated by immunohistochemistry. Further, telomerase activity (TA) and gene expression were analyzed by TRAP and qPCR. DNA from 20 human neuroblastomas and 8 sarcoma cell lines served as comparative controls. ALT was detected in 9.4% (6/64) canine sarcomas including aggressive subtypes as hemangiosarcoma, osteosarcoma, and histiocytic sarcoma. C-circle levels were comparable with human ALT-positive controls. All ALT tumors demonstrated loss of ATRX expression and 5/6 showed strong p53 expression. TA was detected in 93% (14/15) snap-frozen samples including a sarcoma with ALT activity. This tumor showed long heterogeneous telomeres, and a high level of colocalization of DAXX with telomeres. One sarcoma was ALT and TA negative. All canine and human sarcoma cell lines were ALT negative. In this study, we demonstrated that canine sarcomas use ALT. As in humans, ALT was identified in aggressive sarcomas subtypes and coexisted with TA in one tumor. Overall, canine sarcomas seem to share many similarities with their human counterparts and appear an attractive model for comparative telomere research. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Enfermedades de los Perros/genética , Neuroblastoma/genética , Sarcoma/veterinaria , Homeostasis del Telómero , Telómero/genética , Animales , Línea Celular Tumoral , ADN Helicasas/genética , Enfermedades de los Perros/patología , Perros , Regulación Neoplásica de la Expresión Génica , Humanos , Neuroblastoma/patología , Proteínas Nucleares/genética , Sarcoma/genética , Sarcoma/patología , Proteína p53 Supresora de Tumor/genética , Proteína Nuclear Ligada al Cromosoma X
2.
Mol Carcinog ; 54(9): 841-52, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24719266

RESUMEN

Fibroblast growth factor receptors (FGFRs) are important in malignant progression of several human epithelial tumors. However, little is known about FGFRs in canine or human soft tissue sarcomas. Thus, our aim was to investigate expression of FGFRs and their involvement in cell survival in sarcomas of both species. FGFR1-4 and FGFRL1 transcripts as well as IIIb/IIIc splice variants of FGFR1-3 were evaluated in 3 canine- and 6 human sarcoma cell lines and 19 spontaneous canine sarcomas by SYBRqPCR. FGFR1 protein expression was assessed by immunohistochemistry. Growth inhibitory effects of FGFR1 inhibitor PD166866 and dominant negative recombinant FGFR adenoviral expression constructs (dnFGFR) on tumor cell lines were analyzed. Profiling of multiple FGFR transcripts detected comparable co-expression in most of human and canine sarcoma cell lines and canine tumor specimens. This indicates existence of closely related regulation mechanisms for FGFR expression in sarcomas of both species. FGFR1 with splice variant IIIc was consistently expressed with highest transcript levels. In 88% of the spontaneous tumor samples a heterogeneous FGFR1 protein expression was observed. Significant growth inhibition and cell death was seen after infection with dnFGFR1 in canine and human sarcoma cells, but not with dnFGFR3 and 4. PD166866 showed selective cytotoxicity with IC50 values between 12.1 and 26.4 µM. FGFR1 inhibition blocked ligand-induced tyrosine phosphorylation of ERK1/2 mitogen-activated protein kinase isoforms. This study emphasizes the important role FGFR1, especially splice variant IIIc, likely plays in sarcomas. Inhibitory small molecules could be of potential use for targeted therapy in aggressive sarcomas of both species.


Asunto(s)
Proteínas Tirosina Quinasas/farmacología , Pirimidinas/farmacología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Sarcoma/genética , Urea/análogos & derivados , Animales , Línea Celular Tumoral , Perros , Regulación Neoplásica de la Expresión Génica , Humanos , Isoformas de Proteínas/análisis , Isoformas de Proteínas/genética , Estructura Terciaria de Proteína , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/análisis , Sarcoma/tratamiento farmacológico , Sarcoma/patología , Transducción de Señal/efectos de los fármacos , Urea/farmacología
3.
Cancers (Basel) ; 13(21)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34771533

RESUMEN

C-Circles, self-primed telomeric C-strand templates for rolling circle amplification, are the only known alternative-lengthening-of-telomeres (ALT)-specific molecule. However, little is known about the biology of C-Circles and if they may be clinically useful. Here we show that C-Circles are secreted by ALT+ cancer cells inside exosomes, and that a blood-based C-Circle Assay (CCA) can provide an accurate diagnostic for ALT activity. Extracellular vesicles were isolated by differential centrifugation from the growth media of lung adenocarcinoma, glioblastoma, neuroblastoma, osteosarcoma, and soft tissue sarcoma cell lines, and C-Circles were detected in the exosome fraction from all eleven ALT+ cancer cell lines and not in any extracellular fraction from the eight matching telomerase positive cancer cell lines or the normal fibroblast strain. The existence of C-Circles in ALT+ exosomes was confirmed with exosomes isolated by iodixanol gradient separation and CD81-immunoprecipitation, and C-Circles in the exosomes were protected from nucleases. On average, 0.4% of the total ALT+ intracellular C-Circles were secreted in the exosomes every 24 h. Comparing the serum-based and tumor-based CCAs in 35 high risk neuroblastoma patients divided randomly into ALT+ threshold derivation and validation groups, we found the serum-based CCA to have 100% sensitivity (6/6), 70% specificity (7/10), and 81% concordance (13/16). We conclude that the secretion of C-Circles by ALT+ cancer cells in the exosomes provides a stable blood-based biomarker and a potential clinical diagnostic for ALT activity.

4.
Oncotarget ; 7(45): 73800-73816, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27650542

RESUMEN

ESRPs are master splice regulators implicated in alternative mRNA splicing programs important for epithelial-mesenchymal transition (EMT) and tumor progression. ESRP1 was identified in some tumors as good or worse predictor of outcome, but in colorectal cancer (CRC) the prognostic value of ESRPs and relation with mesenchymal splice variants is not clear. Here, we studied 68 CRC cases, compared tissue expression of ESRPs with clinical data and with EMT gene splice patterns of conditional CRC cells with deficient ESRP1 expression.Around 72% of patients showed global decreased transcript expression of both ESRPs in tumor as compared to matched non-neoplastic colorectal epithelium. Reduction of ESRP1 in tumor cells was evaluated by immunohistochemistry, associated with microsatellite stability and switch to mesenchymal splice signatures of FGFRs, CD44, ENAH and CTNND1(p120-catenin). Expression of ESRPs was significantly associated with favorable overall survival (log-rank test, P=0.0186 and 0.0408), better than prognostic stratification by tumor staging; and for ESRP1 confirmed with second TCGA cohort (log-rank test, P=0.0435). Prognostic value is independent of the pathological stage and microsatellite instability (ESRP1: HR=0.36, 95%CI 0.15-0.91, P=0.032; ESRP2: HR=0.23, 95%CI 0.08-0.65, P=0.006).Our study supports the role of ESRP1 as tumor suppressor and strongly suggests that ESRPs are candidate markers for early detection, diagnosis, and prognosis of CRC.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/mortalidad , Empalme del ARN , Proteínas de Unión al ARN/genética , Adulto , Anciano , Anciano de 80 o más Años , Línea Celular Tumoral , Neoplasias Colorrectales/diagnóstico , Femenino , Expresión Génica , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Masculino , Inestabilidad de Microsatélites , Persona de Mediana Edad , Clasificación del Tumor , Estadificación de Neoplasias , Pronóstico , Modelos de Riesgos Proporcionales , Proteínas de Unión al ARN/metabolismo
5.
Neoplasia ; 14(1): 44-53, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22355273

RESUMEN

A hallmark of tumor cell survival is the maintenance of elongated telomeres. It is known that antiviral reverse transcriptase inhibitors (RTIs) such as azidothymidine (AZT) and didanosine (ddI) lead to telomere shortening at high, potentially toxic concentrations. We hypothesized that those drugs might have synergistic effects enabling successful therapy with low, nontoxic concentrations. Biologic effects of AZT and ddI were analyzed at concentrations that correspond to minimal plasma levels achieved during human immunodeficiency virus therapy. Long-term coapplication of low-dose AZT and ddI induced a significant shortening of telomeres in the tumor cell lines HCT-116, SkMel-28, MelJuso, and Jurkat. Treatment of cells with both RTI, but not with single RTI, led to a significant accumulation of γH2AX, to p53 phosphorylation, and to cell apoptosis in all cell lines. Oral low-dose dual RTI application but not low-dose single RTI application was associated with a significantly reduced tumor growth of HCT-116 cells in mice. This antiproliferative activity of the combined use of AZT and ddI at low, clinically applicable concentrations warrants clinical testing in human solid cancer.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Didanosina/administración & dosificación , Neoplasias Experimentales/tratamiento farmacológico , Acortamiento del Telómero/efectos de los fármacos , Zidovudina/administración & dosificación , Animales , Southern Blotting , Línea Celular Tumoral , Técnica del Anticuerpo Fluorescente , Humanos , Inmunohistoquímica , Hibridación Fluorescente in Situ , Ratones , Ratones Desnudos , Reacción en Cadena en Tiempo Real de la Polimerasa , Inhibidores de la Transcriptasa Inversa/administración & dosificación , Telómero/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Transl Oncol ; 5(1): 56-65, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22348177

RESUMEN

Cancer cells bypass replicative senescence, the major barrier to tumor progression, by using telomerase or alternative lengthening of telomeres (ALT) as telomere maintenance mechanisms (TMMs). Correlation between ALT and patient survival was demonstrated for high-grade astrocytomas. Transcription from subtelomeres produces telomeric repeat-containing RNA (TERRA), a natural inhibitor of telomerase activity (TA). This led us to evaluate correlations of TERRA and TMM with tumor grade and outcome in astrocytoma patients. SYBR Green real-time reverse transcription-polymerase chain reaction assays for quantitation of total and chromosome 2p and 18p specific TERRA levels were developed. Tumor samples from 46 patients with astrocytoma grade 2 to 4, tissue controls, and cell lines were assessed. TMMs were evaluated by measuring TA and by detecting long telomeres due to ALT. In glioblastoma multiforme (GBM) grade 4, total TERRA levels were similar to cell lines but 14-, 31-, and 313-fold lower compared with grade 3, grade 2, and nonmalignant tissue, respectively. Total TERRA levels differed from chromosomal levels. Low 2p TERRA levels correlated with dense promoter methylation of subtelomeric CpG islands, indicating that TERRA expression in gliomas may be chromosome specific and epigenetically regulated. Total TERRA levels correlated with diagnosis, with low or absent TA and the presence of ALT, and were tentatively associated with favorable patient prognosis in our cohort (P = .06). TA and short telomeres identified a subset of GBM with a median survival of only 14.8 months. TERRA and TA may be prognostic in astrocytic tumors.

7.
J Nucleic Acids ; 2012: 950508, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22203889

RESUMEN

Alternative splicing of the IgIII loop of fibroblast growth factor receptors (FGFRs) 1-3 produces b- and c-variants of the receptors with distinctly different biological impact based on their distinct ligand-binding spectrum. Tissue-specific expression of these splice variants regulates interactions in embryonic development, tissue maintenance and repair, and cancer. Alterations in FGFR2 splicing are involved in epithelial mesenchymal transition that produces invasive, metastatic features during tumor progression. Recent research has elucidated regulatory factors that determine the splice choice both on the level of exogenous signaling events and on the RNA-protein interaction level. Moreover, methodology has been developed that will enable the in depth analysis of splicing events during tumorigenesis and provide further insight on the role of FGFR 1-3 IIIb and IIIc in the pathophysiology of various malignancies. This paper aims to summarize expression patterns in various tumor types and outlines possibilities for further analysis and application.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA