Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Metab Brain Dis ; 37(7): 2315-2329, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35778625

RESUMEN

Therapeutic hypothermia (TH) is the standard treatment for neonatal hypoxia-ischemia (HI) with a time window limited up to 6 h post injury. However, influence of sexual dimorphism in the therapeutic window for TH has not yet been elucidated in animal models of HI. Therefore, the aim of this study was to investigate the most effective time window to start TH in male and female rats submitted to neonatal HI. Wistar rats (P7) were divided into the following groups: NAÏVE and SHAM (control groups), HI (submitted to HI) and TH (submitted to HI and TH; 32ºC for 5 h). TH was started at 2 h (TH-2 h group), 4 h (TH-4 h group), or 6 h (TH-6 h group) after HI. At P14, animals were subjected to behavioural tests, volume of lesion and reactive astrogliosis assessments. Male and female rats from the TH-2 h group showed reduction in the latency of behavioral tests, and decrease in volume of lesion and intensity of GFAP immunofluorescence. TH-2 h females also showed reduction of degenerative cells and morphological changes in astrocytes. Interestingly, females from the TH-6 h group showed an increase in volume of lesion and in number of degenerative hippocampal cells, associated with worse behavioral performance. Together, these results indicate that TH neuroprotection is time- and sex-dependent. Moreover, TH started later (6 h) can worsen volume of brain lesion in females. These data indicate the need to develop specific therapeutic protocols for each sex and reinforce the importance of early onset of the hypothermic treatment.


Asunto(s)
Hipotermia Inducida , Hipoxia-Isquemia Encefálica , Animales , Masculino , Femenino , Ratas , Hipoxia-Isquemia Encefálica/terapia , Hipoxia-Isquemia Encefálica/patología , Gliosis/terapia , Gliosis/patología , Ratas Wistar , Animales Recién Nacidos , Encéfalo , Isquemia/patología , Isquemia/terapia , Modelos Animales de Enfermedad
2.
J Neurochem ; 157(6): 1911-1929, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33098090

RESUMEN

Prenatal and early postnatal periods are important for brain development and neural function. Neonatal insults such as hypoxia-ischemia (HI) causes prolonged neural and metabolic dysregulation, affecting central nervous system maturation. There is evidence that brain hypometabolism could increase the risk of adult-onset neurodegenerative diseases. However, the impact of non-pharmacologic strategies to attenuate HI-induced brain glucose dysfunction is still underexplored. This study investigated the long-term effects of early environmental enrichment in metabolic, cell, and functional responses after neonatal HI. Thereby, male Wistar rats were divided according to surgical procedure, sham, and HI (performed at postnatal day 3), and the allocation to standard (SC) or enriched condition (EC) during gestation and lactation periods. In-vivo cerebral metabolism was assessed by means of [18 F]-FDG micro-positron emission tomography, and cognitive, biochemical, and histological analyses were performed in adulthood. Our findings reveal that HI causes a reduction in glucose metabolism and glucose transporter levels as well as hyposynchronicity in metabolic brain networks. However, EC during prenatal or early postnatal period attenuated these metabolic disturbances. A positive correlation was observed between [18 F]-FDG values and volume ratios in adulthood, indicating that preserved tissue by EC is metabolically active. EC promotes better cognitive scores, as well as down-regulation of amyloid precursor protein in the parietal cortex and hippocampus of HI animals. Furthermore, growth-associated protein 43 was up-regulated in the cortex of EC animals. Altogether, results presented support that EC during gestation and lactation period can reduce HI-induced impairments that may contribute to functional decline and progressive late neurodegeneration.


Asunto(s)
Encéfalo/metabolismo , Ambiente , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/prevención & control , Plasticidad Neuronal/fisiología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Animales , Animales Recién Nacidos , Femenino , Hipoxia-Isquemia Encefálica/psicología , Lactancia/metabolismo , Lactancia/psicología , Masculino , Aprendizaje por Laberinto/fisiología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/prevención & control , Enfermedades Neurodegenerativas/psicología , Tomografía de Emisión de Positrones/métodos , Embarazo , Efectos Tardíos de la Exposición Prenatal/psicología , Ratas , Ratas Wistar
3.
Neurochem Res ; 43(12): 2268-2276, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30255215

RESUMEN

Neonatal hypoxia-ischemia (HI) is associated to cognitive and motor impairments and until the moment there is no proven treatment. The underlying neuroprotective mechanisms of stem cells are partially understood and include decrease in excitotoxicity, apoptosis and inflammation suppression. This study was conducted in order to test the effects of intracardiac transplantation of human dental pulp stem cells (hDPSCs) for treating HI damage. Seven-day-old Wistar rats were divided into four groups: sham-saline, sham-hDPSCs, HI-saline, and HI-hDPSCs. Motor and cognitive tasks were performed from postnatal day 30. HI-induced cognitive deficits in the novel-object recognition test and in spatial reference memory impairment which were prevented by hDPSCs. No motor impairments were observed in HI animals. Immunofluorescence analysis showed human-positive nuclei in hDPSC-treated animals closely associated with anti-GFAP staining in the lesion scar tissue, suggesting that these cells were able to migrate to the injury site and could be providing support to CNS cells. Our study evidence novel evidence that hDPSC can contribute to the recovery following hypoxia-ischemia and highlight the need of further investigation in order to better understand the exact mechanisms underlying its neuroprotective effects.


Asunto(s)
Disfunción Cognitiva/prevención & control , Pulpa Dental/trasplante , Hipoxia-Isquemia Encefálica/terapia , Trasplante de Células Madre/métodos , Animales , Animales Recién Nacidos , Células Cultivadas , Disfunción Cognitiva/etiología , Disfunción Cognitiva/patología , Pulpa Dental/citología , Pulpa Dental/fisiología , Femenino , Ventrículos Cardíacos , Humanos , Hipoxia-Isquemia Encefálica/complicaciones , Hipoxia-Isquemia Encefálica/patología , Inyecciones , Masculino , Aprendizaje por Laberinto/fisiología , Embarazo , Distribución Aleatoria , Ratas , Ratas Wistar , Células Madre/fisiología
4.
Metab Brain Dis ; 33(3): 813-821, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29363039

RESUMEN

Progesterone displays a strong potential for the treatment of neonatal hypoxic-ischemic encephalopathy since it has been shown to be beneficial in the treatment of the central nervous system injuries in adult animals. Here, we evaluated the effects of the administration of progesterone (10 mg/kg) in seven-days-old male Wistar rats submitted to neonatal hypoxia-ischemia (HI). Progesterone was administered immediately before ischemia and/or 6 and 24 h after the onset of hypoxia. The body weight of the animals, the volume of brain lesion and the expression of p-Akt and procaspase-3 in the hippocampus were evaluated. All animals submitted to HI showed a reduction in the body weight. However, this reduction was more remarkable in those animals which received progesterone before surgery. Administration of progesterone was unable to reduce the volume of brain damage caused by HI. Moreover, no significant differences were observed in the expression of p-Akt and procaspase-3 in animals submitted to HI and treated with either progesterone or vehicle. In summary, progesterone did not show a neuroprotective effect on the volume of brain lesion in neonatal rats submitted to hypoxia-ischemia. Furthermore, progesterone was unable to modulate p-Akt and procaspase-3 signaling pathways, which may explain the absence of neuroprotection. On the other hand, it seems that administration of progesterone before ischemia exerts some systemic effect, leading to a remarkable reduction in the body weight.


Asunto(s)
Lesiones Encefálicas/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Progesterona/farmacología , Animales , Animales Recién Nacidos , Peso Corporal/efectos de los fármacos , Encéfalo/metabolismo , Lesiones Encefálicas/metabolismo , Caspasa 3/metabolismo , Masculino , Fármacos Neuroprotectores/farmacología , Progesterona/metabolismo , Ratas Wistar
5.
J Perinat Med ; 46(4): 433-439, 2018 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-28841577

RESUMEN

Neonatal hypoxia ischemia (HI) is the main cause of mortality and morbidity in newborns. The mechanisms involved in its progression start immediately and persist for several days. Oxidative stress and inflammation are determinant factors of the severity of the final lesion. The spleen plays a major part in the inflammatory response to HI. This study assessed the temporal progression of HI-induced alterations in oxidative stress parameters in the hippocampus, the most affected brain structure, and in the spleen. HI was induced in Wistar rat pups in post-natal day 7. Production of reactive oxygen species (ROS), and the activity of the anti oxidant enzyme superoxide dismutase and catalase were assessed 24 h, 96 h and 38 days post-HI. Interestingly, both structures showed a similar pattern, with few alterations in the production of ROS species up to 96 h often combined with an increased activity of the anti oxidant enzymes. However, 38 days after the injury, ROS were at the highest in both structures, coupled with a decrease in the activity of the enzymes. Altogether, present results suggest that HI causes long lasting alterations in the hippocampus as well as in the spleen, suggesting a possible target for delayed treatments for HI.


Asunto(s)
Hipocampo/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Estrés Oxidativo , Bazo/metabolismo , Animales , Animales Recién Nacidos , Catalasa/metabolismo , Modelos Animales de Enfermedad , Femenino , Hipocampo/patología , Hipoxia-Isquemia Encefálica/patología , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Bazo/patología , Superóxido Dismutasa/metabolismo
6.
Neurochem Res ; 42(5): 1422-1429, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28210957

RESUMEN

Regular physical activity has shown to improve the quality of life and to prevent age-related memory deficits. Memory processing requires proper regulation of several enzymes such as sodium-potassium adenosine triphosphatase (Na+, K+-ATPase) and acetylcholinesterase (AChE), which have a pivotal role in neuronal transmission. The present study investigated the effects of a treadmill running protocol in young (3 months), mature (6 months) and aged (22 months) Wistar rats, on: (a) cognitive function, as assessed in the Water maze spatial tasks; (b) Na+, K+-ATPase and AChE activities in the hippocampus following cognitive training alone or treadmill running combined with cognitive training. Animals of all ages were assigned to naïve (with no behavioral or exercise training), sedentary (non-exercised, with cognitive training) and exercised (20 min of daily running sessions, 3 times per week for 4 weeks and with cognitive training) groups. Cognition was assessed by reference and working memory tasks run in the Morris Water maze; 24 h after last session of behavioral testing, hippocampi were collected for biochemical analysis. Results demonstrated that: (a) a moderate treadmill running exercise prevented spatial learning and memory deficits in aged rats; (b) training in the Water maze increased both Na+, K+-ATPase and AChE activities in the hippocampus of mature and aged rats; (c) aged exercised rats displayed an even further increase of Na+, K+-ATPase activity in the hippocampus, (d) enzyme activity correlated with memory performance in aged rats. It is suggested that exercise prevents spatial memory deficits in aged rats probably through the activation of Na+, K+-ATPase in the hippocampus.


Asunto(s)
Envejecimiento/metabolismo , Hipocampo/enzimología , Trastornos de la Memoria/enzimología , Condicionamiento Físico Animal/fisiología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Memoria Espacial/fisiología , Animales , Activación Enzimática/fisiología , Prueba de Esfuerzo/métodos , Prueba de Esfuerzo/psicología , Masculino , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/prevención & control , Condicionamiento Físico Animal/métodos , Condicionamiento Físico Animal/psicología , Distribución Aleatoria , Ratas , Ratas Wistar
7.
Pediatr Res ; 82(3): 544-553, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28426648

RESUMEN

BackgroundHypoxia-ischemia (HI) is a major cause of neurological damage in preterm newborn. Swimming during pregnancy alters the offspring's brain development. We tested the effects of swimming during pregnancy in the very immature rat brain.MethodsFemale Wistar rats (n=12) were assigned to the sedentary (SE, n=6) or the swimming (SW, n=6) group. From gestational day 0 (GD0) to GD21 the rats in the SW group were made to swim for 20 min/day. HI on postnatal day (PND) 3 rats caused sensorimotor and cognitive impairments. Animals were distributed into SE sham (SESH), sedentary HIP3 (SEHI), swimming sham (SWSH), and swimming HIP3 (SWHI) groups. At PND4 and PND5, Na+/K+-ATPase activity and brain-derived neurotrophic factor (BDNF) levels were assessed. During lactation and adulthood, neurological reflexes, sensorimotor, anxiety-related, and cognitive evaluations were made, followed by histological assessment at PND60.ResultsAt early stages, swimming caused an increase in hippocampal BDNF levels and in the maintenance of Na+/K+-ATPase function in the SWHI group. The SWHI group showed smaller lesions and the preservation of white matter tracts. SEHI animals showed a delay in reflex maturation, which was reverted in the SWHI group. HIP3 induced spatial memory deficits and hypomyelination in SEHI rats, which was reverted in the SWHI group.ConclusionSwimming during pregnancy neuroprotected the brains against HI in very immature neonatal rats.


Asunto(s)
Hipoxia-Isquemia Encefálica/prevención & control , Neuroprotección , Natación , Animales , Conducta Animal , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Femenino , Hipocampo/metabolismo , Lóbulo Parietal/enzimología , Embarazo , Ratas , Ratas Wistar , Reflejo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
8.
Carbohydr Polym ; 320: 121214, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659814

RESUMEN

Mucopolysaccharidosis IIIA is a hereditary disease caused by mutations in the sulfamidase enzyme that participates in catabolism of heparan sulfate (HS), leading to HS fragment accumulation and multisystemic failure. No cure exists and death occurs around the second decade of life. Two low molecular weight highly sulfated compounds derived from marine diabolican and infernan exopolysaccharides (A5_3 and A5_4, respectively) with heparanase inhibiting properties were tested in a MPSIIIA cell line model, resulting in limited degradation of intracellular HS. Next, we observed the effects of intraperitoneal injections of the diabolican derivative A5_3 from 4 to 12 weeks of age on MPSIIIA mice. Brain metabolism and microstructure, levels of proteins and genes involved in MPSIIIA brain pathophysiology were also investigated. 1H-Magnetic Resonance Spectroscopy (MRS) indicated deficits in energetic metabolism, tissue integrity and neurotransmission at both 4 and 12 weeks in MPSIIIA mice, with partial protective effects of A5_3. Ex-vivo Diffusion Tensor Imaging (DTI) showed white matter microstructural damage in MPSIIIA, with noticeable protective effects of A5_3. Protein and gene expression assessments displayed both pro-inflammatory and pro-apoptotic profiles in MPSIIIA mice, with benefits of A5_3 counteracting neuroinflammation. Overall, derivative A5_3 was well tolerated and was shown to be efficient in preventing brain metabolism failure and inflammation, resulting in preserved brain microstructure in the context of MPSIIIA.

9.
Nutrients ; 14(14)2022 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-35889882

RESUMEN

Early adverse fetal environments can significantly disturb central nervous system (CNS) development and subsequently alter brain maturation. Nutritional status is a major variable to be considered during development and increasing evidence links neonate and preterm infant impaired brain growth with neurological and psychiatric diseases in adulthood. Breastfeeding is one of the main components required for healthy newborn development due to the many "constitutive" elements breastmilk contains. Maternal intake of specific nutrients during lactation may alter milk composition, thus affecting newborn nutrition and, potentially, brain development. Lactoferrin (Lf) is a major protein present in colostrum and the main protein in human milk, which plays an important role in the benefits of breastfeeding during postnatal development. It has been demonstrated that Lf has antimicrobial, as well as anti-inflammatory properties, and is potentially able to reduce the incidence of sepsis and necrotizing enterocolitis (NEC), which are particularly frequent in premature births. The anti-inflammatory effects of Lf can reduce birth-related pathologies by decreasing the release of pro-inflammatory factors and inhibiting premature cervix maturation (also related to commensal microbiome abnormalities) that could contribute to disrupting brain development. Pre-clinical evidence shows that Lf protects the developing brain from neuronal injury, enhances brain connectivity and neurotrophin production, and decreases inflammation in models of perinatal inflammatory challenge, intrauterine growth restriction (IUGR) and neonatal hypoxia-ischemia (HI). In this context, Lf can provide nutritional support for brain development and cognition and prevent the origin of neuropsychiatric diseases later in life. In this narrative review, we consider the role of certain nutrients during neurodevelopment linking to the latest research on lactoferrin with respect to neonatology. We also discuss new evidence indicating that early neuroprotective pathways modulated by Lf could prevent neurodegeneration through anti-inflammatory and immunomodulatory processes.


Asunto(s)
Enterocolitis Necrotizante , Enfermedades del Recién Nacido , Nacimiento Prematuro , Adulto , Encéfalo/metabolismo , Enterocolitis Necrotizante/prevención & control , Femenino , Humanos , Recién Nacido , Recien Nacido Prematuro , Lactoferrina/metabolismo , Lactoferrina/farmacología , Longevidad , Leche Humana/metabolismo , Embarazo
10.
Behav Brain Res ; 407: 113237, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33798820

RESUMEN

Hypoxia-ischemia (HI) is a consequence of a lack of oxygen and glucose support to the developing brain, which causes several neurodevelopmental impairments. Environmental enrichment (EE) is considered an option to recover the alterations observed in rodents exposed to HI. The aim of this study was to investigate the impact of early EE on memory, hippocampal volume and brain-derived neurotrophic factor (Bbnf) and glucocorticoid receptor (Nr3c1) gene expression of mice exposed to HI. At P10, pups underwent right carotid artery permanent occlusion followed by 35 min of 8% O2 hypoxic environment. Starting at P11, animals were reared in EE or in standard cage (HI-SC or SHAM-SC) conditions until behavioral testing (P45). SHAM pups did not undergo carotid ligation and hypoxic exposure. Memory performance was assessed in the Y-maze, Novel object recognition, and Barnes maze. Animals were then sacrificed for analysis of hippocampal volume and Bdnf and Nr3c1 gene expression. We observed that animals exposed to HI performed worse in all three tests compared to SHAM animals. Furthermore, HI animals exposed to EE did not differ from SHAM animals in all tasks. Moreover, HI decreased hippocampal volume, while animals reared in early EE were not different compared to SHAM animals. Animals exposed to HI also showed upregulated hippocampal Bdnf expression compared to SHAM animals. We conclude that early EE from P11 to P45 proved to be effective in recovering memory impairments and hippocampal volume loss elicited by HI. Nevertheless, Bdnf expression was not associated with the improvements in memory performance observed in animals exposed to EE after a hypoxic-ischemic event.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ambiente , Hipocampo , Hipoxia-Isquemia Encefálica/complicaciones , Trastornos de la Memoria/etiología , Trastornos de la Memoria/rehabilitación , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Hipocampo/patología , Hipocampo/fisiopatología , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/patología , Hipoxia-Isquemia Encefálica/fisiopatología , Masculino , Trastornos de la Memoria/fisiopatología , Ratones , Ratones Endogámicos BALB C
11.
Neuroscience ; 448: 191-205, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-32905840

RESUMEN

Neonatal hypoxic-ischemic encephalopathy is a major cause of mortality and disability in newborns and the only standard approach for treating this condition is therapeutic hypothermia, which shows some limitations. Thus, putative neuroprotective agents have been tested in animal models. The present study evaluated the administration of lactate, a potential energy substrate of the central nervous system (CNS) in an animal model of hypoxia-ischemia (HI), that mimics in neonatal rats the brain damage observed in human newborns. Seven-day-old (P7) male and female Wistar rats underwent permanent common right carotid occlusion combined with an exposition to a hypoxic atmosphere (8% oxygen) for 60 min. Animals were assigned to four experimental groups: HI, HI + LAC, SHAM, SHAM + LAC. Lactate was administered intraperitoneally 30 min and 2 h after hypoxia in HI + LAC and SHAM + LAC groups. HI and SHAM groups received vehicle at the same time points. The volume of brain lesion was evaluated in P9. Animals underwent behavioral assessments: negative geotaxis, righting reflex (P8 and P14), and cylinder test (P20). Lactate administration reduced the volume of brain lesion and improved behavioral parameters after HI in both sexes. Thus, lactate administration could be a neuroprotective strategy for the treatment of neonatal HI, a disorder still affecting a significant percentage of human newborns.


Asunto(s)
Lesiones Encefálicas , Hipoxia-Isquemia Encefálica , Fármacos Neuroprotectores , Animales , Animales Recién Nacidos , Encéfalo , Modelos Animales de Enfermedad , Femenino , Hipoxia , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Isquemia , Ácido Láctico , Masculino , Ratas , Ratas Wistar
12.
Nutrition ; 75-76: 110770, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32276242

RESUMEN

OBJECTIVE: Exposure to artificial sweeteners, such as aspartame, during childhood and adolescence has been increasing in recent years. However, the safe use of aspartame has been questioned owing to its potentially harmful effects on the developing brain. The aim of this study was to test whether the chronic consumption of aspartame during adolescence leads to a depressive-like phenotype and to investigate the possible mechanisms underlying these behavioral changes. METHODS: Adolescent male and female rats were given unlimited access to either water, solutions of aspartame, or sucrose in their home cages from postnatal day 21 to 55. RESULTS: Forced swim test revealed that both chronic aspartame and sucrose intake induced depressive-like behaviord, which was more pronounced in males. Additionally, repeated aspartame intake was associated with increased cerebrospinal fluid (CSF) aspartate levels, decreased hippocampal neurogenesis, and reduced activation of the hippocampal leptin signaling pathways in males. In females, we observed a main effect of aspartame: reducing PI3K/AKT one of the brain-derived neurotrophic factor pathways; aspartame also increased CSF aspartate levels and decreased the immunocontent of the GluN2A subunit of the N-methyl-d-aspartic acid receptor. CONCLUSION: The findings revealed that repeated aspartame intake during adolescence is associated with a depressive-like phenotype and changes in brain plasticity. Interestingly, males appear to be more vulnerable to the adverse neurometabolic effects of aspartame than females, demonstrating a sexually dimorphic response. The present results highlighted the importance of understanding the effects caused by the constant use of this artificial sweetener in sensitive periods of development and contribute to regulation of its safe use.


Asunto(s)
Aspartame , Fosfatidilinositol 3-Quinasas , Edulcorantes , Animales , Aspartame/toxicidad , Femenino , Masculino , Fenotipo , Ratas , Sacarosa , Edulcorantes/toxicidad
13.
Front Physiol ; 10: 634, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31231232

RESUMEN

Systemic hypoxia-ischemia (HI) often occurs during preterm birth in human. HI induces injuries to hinder brain cells mainly in the ipsilateral forebrain structures. Such HI injuries may cause lifelong disturbances in the distant regions, such as the contralateral side of the cerebellum. We aimed to evaluate behavior associated with the cerebellum, to acquire cerebellar abundant metabolic alterations using in vivo 1H magnetic resonance spectroscopy (1H MRS), and to determine GFAP, NeuN, and MBP protein expression in the left cerebellum, in adult rats after mild early postnatal HI on the right forebrain at day 3 (PND3). From PND45, HI animals exhibited increased locomotion in the open field while there is neither asymmetrical forelimb use nor coordination deficits in the motor tasks. Despite the fact that metabolic differences between two cerebellar hemispheres were noticeable, a global increase in glutamine of HI rats was observed and became significant in the left cerebellum compared to the sham-operated group. Furthermore, increases in glutamate, glycine, the sum of glutamate and glutamine and total choline, only occurred in the left cerebellum of HI rats. Remarkably, there were decreased expression of MBP and NeuN but no detectable reactive astrogliosis in the contralateral side of the cerebellum of HI rats. Taken together, the detected alterations observed in the left cerebellum of HI rats may reflect disequilibrium in the glutamate-glutamine cycle and a delay in the return of glutamine from astrocytes to neurons from hypoxic-ischemic origin. Our data provides in vivo evidence of long-term changes in the corresponding cerebellum following mild neonatal HI in very immature rats, supporting the notion that systemic HI could cause cell death in the cerebellum, a distant region from the expected injury site. HIGHLIGHTS: -Neonatal hypoxia-ischemia (HI) in very immature rats induces hyperactivity toward adulthood.-1H magnetic resonance spectroscopy detects long-term cerebellar metabolic changes in adult rats after neonatal HI at postnatal day 3.-Substantial decreases of expression of neuronal and myelin markers in adult rats cerebellum after neonatal cortical mild HI.

14.
Int J Dev Neurosci ; 79: 86-95, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31693927

RESUMEN

INTRODUCTION: Neonatal Hypoxia-Ischemia (HI) is a major cause of morbidity and mortality, and is frequently associated with short and long-term neurologic and cognitive impairments. The HI injury causes mitochondrial damage leading to increased production of reactive oxygen species (ROS). Phytoestrogens are non-steroidal plant substances structurally and functionally similar to estrogen. Coumestrol is a potent isoflavonoid with a protective effect against ischemic brain damage in adult rats. Our aim was to determine if coumestrol treatment following neonatal HI attenuates the long-term cognitive deficits induced by neonatal HI, as well as to investigate one possible mechanism underlying its potential effect. METHODS: On the 7th postnatal day, male Wistar rats were submitted to the Levine-Rice HI model. Intraperitoneal injections of 20 mg/kg of coumestrol, or vehicle, were administered immediately pre-hypoxia or 3 h post-hypoxia. At 12 h after HI the mitochondrial status and ROS levels were determined. At 60th postnatal day the cognitive deficits were revealed in the Morris water maze reference and working spatial memories. Following behavioral analysis, histological assessment was performed and reactive astrogliosis was measured by GFAP expression. RESULTS: Results demonstrate that both pre- and post-HI administration of coumestrol were able to counteract the long-term cognitive and morphological impairments caused by HI, as well as to block the late reactive astrogliosis. The pre-HI administration of coumestrol was able to prevent the early mitochondrial dysfunction in the hippocampus of injured rat pups. CONCLUSION: Present data suggest that coumestrol exerts protection against experimental neonatal brain hypoxia-ischemia through, at least in part, early modulation of mitochondrial function.


Asunto(s)
Encéfalo/efectos de los fármacos , Cognición/efectos de los fármacos , Disfunción Cognitiva/tratamiento farmacológico , Cumestrol/farmacología , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Animales , Encéfalo/metabolismo , Disfunción Cognitiva/metabolismo , Cumestrol/uso terapéutico , Hipoxia-Isquemia Encefálica/metabolismo , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Mitocondrias/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Fitoestrógenos/farmacología , Fitoestrógenos/uso terapéutico , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
15.
Mol Neurobiol ; 56(1): 761-762, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29909452

RESUMEN

The authors hereby declare that the Figure 4 in page eight of the paper "Stem cells from human exfoliated deciduous teeth modulate early astrocyte response after spinal cord contusion" authored by Fabrício Nicola and colleagues (DOI: 10.1007/s12035-018-1127-4) was mistakenly included.

16.
Mol Neurobiol ; 56(1): 748-760, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29796991

RESUMEN

The transplantation of stem cells from human exfoliated deciduous teeth (SHED) has been studied as a possible treatment strategy for spinal cord injuries (SCIs) due to its potential for promoting tissue protection and functional recovery. The aim of the present study was to investigate the effects of the early transplantation of SHED on glial scar formation and astrocytic reaction after an experimental model of SCI. Wistar rats were spinalized using the NYU Impactor. Animals were randomly distributed into three groups: control (naive) (animal with no manipulation); SCI (receiving laminectomy followed by SCI and treated with vehicle), and SHED (SCI rat treated with intraspinal SHED transplantation, 1 h after SCI). In vitro investigation demonstrated that SHED were able to express mesenchymal stem cells, vimentin and S100B markers, related with neural progenitor and glial cells, respectively. The acute SHED transplantation promoted functional recovery, measured as from the first week after spinal cord contusion by Basso, Beattie, and Bresnahan scale. Twenty-four and 48 h after lesion, flow cytometry revealed a spinal cord vimentin+ cells increment in the SHED group. The increase of vimentin+ cells was confirmed by immunofluorescence. Moreover, the bioavailability of astrocytic proteins such as S100B and Kir4.1 shown to be increased in the spinal cord of SHED group, whereas there was a glial scar reduction, as indicated by ELISA and Western blot techniques. The presented results support that SHED act as a neuroprotector agent after transplantation, probably through paracrine signaling to reduce glial scar formation, inducing tissue plasticity and functional recovery.


Asunto(s)
Astrocitos/patología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/terapia , Exfoliación Dental/patología , Diente Primario/citología , Animales , Acuaporina 4/metabolismo , Astrocitos/metabolismo , Células Cultivadas , Proteína Ácida Fibrilar de la Glía/metabolismo , Miembro Posterior/fisiopatología , Humanos , Masculino , Canales de Potasio de Rectificación Interna/metabolismo , Ratas Wistar , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Vimentina/metabolismo
17.
Neuroscience ; 396: 94-107, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30452974

RESUMEN

Peripheral nerve injury is an important cause of incapability and has limited available treatment. Autologous donor nerve implant is the golden standard treatment, however, may cause secondary deficits. Stem cells show positive results in preclinical settings, preserving tissue and function. We tested the efficacy of stem cells derived from human exfoliated deciduous teeth seeded in poly (lactide-co-glycolide) scaffolds in sciatic nerve transection model. Seventy-two adult male Wistar rats had 7-mm nerve gap bridge using scaffolds with (or without) stem cells. Animals were randomly divided into: sham-operated; sham-operated without scaffold; sham-operated + scaffold + stem cells; sciatic transection + no treatment; sciatic transection + acellular scaffolds; sciatic transection + scaffold + stem cells. Sciatic Functional Index and Ladder Rung Walking tests were performed before (-1), 14 and 28 days after surgery. Morphometric nerve measurement and muscle weights were assessed. Scaffolds with stem cells improved function in Sciatic Functional Index. Acellular scaffold was effective, promoting functional recovery and nerve regeneration following nerve injury. Scaffolds provide better nerve regeneration and functional recovery after sciatic transection. Despite cell therapy promoting faster recovery after sciatic transection in the Sciatic Index Score, stem cells did not improve functional and morphological recovery after nerve injury. This is the first study testing the potential use of scaffolds combined with stem cells in the early stages after injury. Scaffolds with stem cells could accelerate nerve recovery and favor adjuvant therapies, evidencing the need for further studies to increase the knowledge about stem cells' mechanisms.


Asunto(s)
Regeneración Nerviosa/efectos de los fármacos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/uso terapéutico , Recuperación de la Función/efectos de los fármacos , Nervio Ciático/efectos de los fármacos , Nervio Ciático/lesiones , Andamios del Tejido , Animales , Humanos , Masculino , Ratas , Recuperación de la Función/fisiología , Nervio Ciático/citología , Nervio Ciático/fisiología , Trasplante de Células Madre , Caminata/fisiología
18.
Mol Neurobiol ; 54(6): 4127-4137, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27324790

RESUMEN

Classical galactosemia is an inborn error of carbohydrate metabolism in which patients accumulate high concentration of galactose in the brain. The most common treatment is a galactose-restricted diet. However, even treated patients develop several complications. One of the most common symptoms is motor coordination impairment, including affected gait, balance, and speech, as well as tremor and ataxia. In the present study, we investigated the effects of intracerebroventricular galactose administration on motor coordination, as well as on histological and biochemical parameters in cerebellum of adult rats. Wistar rats received 5 µL of galactose (4 mM) or saline by intracerebroventricular injection. The animals performed the beam walking test at 1 and 24 h after galactose administration. Histological and biochemical parameters were performed 24 h after the injections. The results showed motor coordination impairment at 24 h after galactose injection. Galactose also decreased the number of cells in the molecular and granular layers of the cerebellum. The immunohistochemistry results suggest that the cell types lost by galactose are neurons and astrocytes in the spinocerebellum and neurons in the cerebrocerebellum. Galactose increased active caspase-3 immunocontent and acetylcholinesterase activity, decreased acetylcholinesterase immunocontent, glutathione, and BDNF levels, as well as caused protein and DNA damage. Our results suggest that galactose induces histological and biochemical changes in cerebellum, which can be associated with motor coordination impairment.


Asunto(s)
Cerebelo/patología , Cerebelo/fisiopatología , Galactosa/farmacología , Actividad Motora/efectos de los fármacos , Acetilcolinesterasa/metabolismo , Animales , Antígenos Nucleares/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Caspasa 3/metabolismo , Recuento de Células , Cerebelo/efectos de los fármacos , Daño del ADN , Galactosa/administración & dosificación , Proteína Ácida Fibrilar de la Glía/metabolismo , Glutatión/metabolismo , Inyecciones Intraventriculares , Masculino , Proteínas del Tejido Nervioso/metabolismo , Ratas Wistar , Compuestos de Sulfhidrilo/metabolismo
19.
Brain Res ; 1663: 95-105, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28322752

RESUMEN

Stem cells from human exfoliated deciduous teeth (SHED) transplants have been investigated as a possible treatment strategy for spinal cord injuries (SCI) due to their potential for promoting functional recovery. The aim of present study was to investigate the effects of SHED on neuronal death after an experimental model of SCI. METHODS: Wistar rats were spinalized using NYU impactor®. Animals were randomly distributed into 4 groups: Control (Naive) or Surgical control, Sham (laminectomy with no SCI); SCI (laminectomy followed by SCI, treated with vehicle); SHED (SCI treated with intraspinal transplantation of 3×105 SHED, 1h after SCI). Functional evaluations and morphological analysis were performed to confirm the spinal injury and the benefit of SHED transplantation on behavior, tissue protection and motor neuron survival. Flow cytometry of neurons, astrocytes, macrophages/microglia and T cells of spinal cord tissue were run at six, twenty-four, forty-eight and seventy-two hours after lesion. Six hours after SCI, ELISA and Western Blot were run to assess pro- and anti-apoptotic factors. The SHED group showed a significant functional improvement in comparison to the SCI animals, as from the first week until the end of the experiment. This behavioral protection was associated with less tissue impairment and greater motor neuron preservation. SHED reduced neuronal loss over time, as well as the overexpression of pro-apoptotic factor TNF-α, while maintained basal levels of the anti-apoptotic BCL-XL six hours after lesion. Data here presented show that SHED transplantation one hour after SCI interferes with the balance between pro- and anti-apoptotic factors and reduces early neuronal apoptosis, what contributes to tissue and motor neuron preservation and hind limbs functional recovery.


Asunto(s)
Células Madre Adultas/trasplante , Traumatismos de la Médula Espinal/terapia , Diente Primario/trasplante , Células Madre Adultas/patología , Animales , Apoptosis , Astrocitos/patología , Supervivencia Celular , Células Cultivadas , Humanos , Masculino , Neuronas/fisiología , Fármacos Neuroprotectores/metabolismo , Ratas , Ratas Wistar , Recuperación de la Función/fisiología , Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Células Madre/patología , Diente Primario/metabolismo
20.
Int J Dev Neurosci ; 50: 1-6, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26948151

RESUMEN

Tissue accumulation of galactose is a hallmark in classical galactosemia. Cognitive deficit is a symptom of this disease which is poorly understood. The aim of this study was to investigate the effects of intracerebroventricular administration of galactose on memory (inhibitory avoidance and novel object recognition tasks) of adult rats. We also investigated the effects of galactose on acetylcholinesterase (AChE) activity, immunocontent and gene expression in hippocampus and cerebral cortex. Wistar rats received a single injection of galactose (4mM) or saline (control). For behavioral parameters, galactose was injected 1h or 24h previously to the testing. For biochemical assessment, animals were decapitated 1h, 3h or 24h after galactose or saline injection; hippocampus and cerebral cortex were dissected. Results showed that galactose impairs the memory formation process in aversive memory (inhibitory avoidance task) and recognition memory (novel object recognition task) in rats. The activity of AChE was increased, whereas the gene expression of this enzyme was decreased in hippocampus, but not in cerebral cortex. These findings suggest that these changes in AChE may, at least in part, to lead to memory impairment caused by galactose. Taken together, our results can help understand the etiopathology of classical galactosemia.


Asunto(s)
Acetilcolinesterasa/metabolismo , Reacción de Prevención/efectos de los fármacos , Galactosa/toxicidad , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Trastornos de la Memoria/inducido químicamente , Acetilcolinesterasa/genética , Animales , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/enzimología , Conducta Exploratoria/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/enzimología , Inhibición Psicológica , Inyecciones Intraventriculares , Masculino , Ratas , Ratas Wistar , Estadísticas no Paramétricas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA