Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37834017

RESUMEN

Nicotine, the primary psychoactive agent in tobacco leaves, has led to the widespread use of tobacco, with over one billion smokers globally. This article provides a historical overview of tobacco and discusses tobacco dependence, as well as the biological effects induced by nicotine on mammalian cells. Nicotine induces various biological effects, such as neoangiogenesis, cell division, and proliferation, and it affects neural and non-neural cells through specific pathways downstream of nicotinic receptors (nAChRs). Specific effects mediated by α7 nAChRs are highlighted. Nicotine is highly addictive and hazardous. Public health initiatives should prioritize combating smoking and its associated risks. Understanding nicotine's complex biological effects is essential for comprehensive research and informed health policies. While potential links between nicotine and COVID-19 severity warrant further investigation, smoking remains a significant cause of morbidity and mortality globally. Effective public health strategies are vital to promote healthier lifestyles.


Asunto(s)
Receptores Nicotínicos , Tabaquismo , Animales , Humanos , Nicotina/efectos adversos , Receptores Nicotínicos/metabolismo , Fumar , Mamíferos/metabolismo
2.
Int J Mol Sci ; 23(16)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36012747

RESUMEN

The aims of our study are to: (i) investigate the ability of nicotine to modulate the expression level of inflammatory cytokines in A549 cells infected with SARS-CoV-2; (ii) elucidate the ultrastructural features caused by the combination nicotine+SARS-CoV-2; and (iii) demonstrate the mechanism of action. In this study, A549 cells pretreated with nicotine were either exposed to LPS or poly(I:C), or infected with SARS-CoV-2. Treated and untreated cells were analyzed for cytokine production, cytotoxicity, and ultrastructural modifications. Vero E6 cells were used as a positive reference. Cells pretreated with nicotine showed a decrease of IL6 and TNFα in A549 cells induced by LPS or poly(I:C). In contrast, cells exposed to SARS-CoV-2 showed a high increase of IL6, IL8, IL10 and TNFα, high cytopathic effects that were dose- and time-dependent, and profound ultrastructural modifications. These modifications were characterized by membrane ruptures and fragmentation, the swelling of cytosol and mitochondria, the release of cytoplasmic content in extracellular spaces (including osmiophilic granules), the fragmentation of endoplasmic reticulum, and chromatin disorganization. Nicotine increased SARS-CoV-2 cytopathic effects, elevating the levels of inflammatory cytokines, and inducing severe cellular damage, with features resembling pyroptosis and necroptosis. The protective role of nicotine in COVID-19 is definitively ruled out.


Asunto(s)
Nicotina , SARS-CoV-2 , Células A549 , COVID-19 , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Humanos , Interleucina-6 , Lipopolisacáridos , Nicotina/efectos adversos , Nicotina/farmacología , Factor de Necrosis Tumoral alfa
3.
Int J Mol Sci ; 23(4)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35216271

RESUMEN

Neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease are clinically diagnosed using neuropsychological and cognitive tests, expensive neuroimaging-based approaches (MRI and PET) and invasive and time-consuming lumbar puncture for cerebrospinal fluid (CSF) sample collection to detect biomarkers. Thus, a rapid, simple and cost-effective approach to more easily access fluids and tissues is in great need. Here, we exploit the chemical direct reprogramming of patient skin fibroblasts into neurons (chemically induced neurons, ciNs) as a novel strategy for the rapid detection of different pathological markers of neurodegenerative diseases. We found that FAD fibroblasts have a reduced efficiency of reprogramming, and converted ciNs show a less complex neuronal network. In addition, ciNs from patients show misfolded protein accumulation and mitochondria ultrastructural abnormalities, biomarkers commonly associated with neurodegeneration. Moreover, for the first time, we show that microfluidic technology, in combination with chemical reprogramming, enables on-chip examination of disease pathological processes and may have important applications in diagnosis. In conclusion, ciNs on microfluidic devices represent a small-scale, non-invasive and cost-effective high-throughput tool for protein misfolding disease diagnosis and may be useful for new biomarker discovery, disease mechanism studies and design of personalised therapies.


Asunto(s)
Biomarcadores/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/metabolismo , Neuronas/patología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Femenino , Humanos , Dispositivos Laboratorio en un Chip , Masculino , Microfluídica/métodos , Persona de Mediana Edad , Neuroimagen/métodos , Pruebas Neuropsicológicas , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología
4.
Pharmacol Res ; 157: 104851, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32423865

RESUMEN

Oxidative stress induced post-translational protein modifications are associated with the development of inflammatory hypersensitivities. At least 90% of cellular reactive oxygen species (ROS) are produced in the mitochondria, where the mitochondrial antioxidant, manganese superoxide dismutase (MnSOD), is located. MnSOD's ability to reduce ROS is enhanced by the mitochondrial NAD+-dependent deacetylase sirtuin (SIRT3). SIRT3 can reduce ROS levels by deacetylating MnSOD and enhancing its ability to neutralize ROS or by enhancing the transcription of MnSOD and other oxidative stress-responsive genes. SIRT3 can be post-translationally modified through carbonylation which results in loss of activity. The contribution of post-translational SIRT3 modifications in central sensitization is largely unexplored. Our results reveal that SIRT3 carbonylation contributes to spinal MnSOD inactivation during carrageenan-induced thermal hyperalgesia in rats. Moreover, inhibiting ROS with natural and synthetic antioxidants, prevented SIRT3 carbonylation, restored the enzymatic activity of MnSOD, and blocked the development of thermal hyperalgesia. These results suggest that therapeutic strategies aimed at inhibiting post-translational modifications of SIRT3 may provide beneficial outcomes in pain states where ROS have been documented to play an important role in the development of central sensitization.


Asunto(s)
Analgésicos/farmacología , Antioxidantes/farmacología , Hiperalgesia/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Umbral del Dolor/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Sirtuinas/metabolismo , Médula Espinal/efectos de los fármacos , Médula Espinal/enzimología , Animales , Línea Celular Tumoral , Humanos , Hiperalgesia/enzimología , Hiperalgesia/genética , Hiperalgesia/fisiopatología , Masculino , Metaloporfirinas/farmacología , Carbonilación Proteica , Ratas Sprague-Dawley , Resveratrol/farmacología , Transducción de Señal , Sirtuinas/genética , Médula Espinal/fisiopatología , Superóxido Dismutasa/metabolismo
5.
Immun Ageing ; 15: 10, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29497453

RESUMEN

BACKGROUND: Chronic rhinitis, pharyngitis and sinusitis are common health problems with a significant impact on public health, and are suspected to be influenced by ageing factors. Nasal inhalation with thermal water may be used to reduce symptoms, inflammation and drug intake. A pre-post clinical study was conducted in 183 consecutive adult and elderly patients with chronic rhinitis, pharyngitis or sinusitis, to evaluate whether thermal water nasal inhalations could improve their symptoms, clinical signs and rhinomanometry measurements, and influence inflammatory biomarkers levels in nasal epithelial cells. RESULTS: Participants profile revealed that they were aged on average (mean age and SD 60.6 ± 15.2 years, median 65, range 20-86, 86 aged ≤ 65 years (47%), 96 aged > 65 years (53%)) and extremely concerned about wellbeing. Older age was associated with better compliance to inhalation treatment. Total symptom and clinical evaluation scores were significantly ameliorated after treatment (p < 0.001), with no substantial difference according to age, while rhinomanometry results were inconsistent. Persistence of symptom improvement was confirmed at phone follow up 1 year later (n = 74). The training set of 48 inflammatory genes (40 patients) revealed a strong increase of CXCR4 gene expression after nasal inhalations, confirmed both in the validation set (143 patients; 1.2 ± 0.68 vs 3.3 ± 1.2; p < 0.0001) and by evaluation of CXCR4 protein expression (40 patients; 1.0 ± 0.39 vs 2.6 ± 0.66; p < 0.0001). CXCR4 expression was consistently changed in patients with rhinitis, pharyngitis or sinusitis. The increase was smaller in current smokers compared to non-smokers. Results were substantially unchanged when comparing aged subjects (≥ 65 years) or the eldest quartile (≥ 71 years) to the others. Other genes showed weaker variations (e.g. FLT1 was reduced only in patients with sinusitis). CONCLUSIONS: These results confirm the clinical impact of thermal water nasal inhalations on upper respiratory diseases both in adults and elders, and emphasize the role of genes activating tissue repair and inflammatory pathways. Future studies should evaluate CXCR4 as possible therapeutic target or response predictor in patients with chronic rhinitis, pharyngitis or sinusitis. TRIAL REGISTRATION: Communication to Italian Ministry of Health - ICPOM 000461. Registered 10/11/2014.

6.
J Cell Physiol ; 232(7): 1835-1844, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27925196

RESUMEN

Sirtuins are conserved NAD+ -dependent deacylases. SIRT1 is a nuclear and cytoplasmic sirtuin involved in the control of histones a transcription factors function. SIRT3 is a mitochondrial protein, which regulates mitochondrial function. Although, both SIRT1 and SIRT3 have been implicated in resistance to cellular stress, the link between these two sirtuins has not been studied so far. Here we aimed to unravel: i) the role of SIRT1-SIRT3 axis for cellular response to oxidative stress and DNA damage; ii) how mammalian cells modulate such SIRT1-SIRT3 axis and which mechanisms are involved. Therefore, we analyzed the response to different stress stimuli in WT or SIRT1-silenced cell lines. Our results demonstrate that SIRT1-silenced cells are more resistant to H2 O2 and etoposide treatment showing decreased ROS accumulation, γ-H2AX phosphorylation, caspase-3 activation and PARP cleavage. Interestingly, we observed that SIRT1-silenced cells show an increased SIRT3 expression. To explore such a connection, we carried out luciferase assays on SIRT3 promoter demonstrating that SIRT1-silencing increases SIRT3 promoter activity and that such an effect depends on the presence of SP1 and ZF5 recognition sequences on SIRT3 promoter. Afterwards, we performed co-immunoprecipitation assays demonstrating that SIRT1 binds and deacetylates the transcription inhibitor ZF5 and that there is a decreased interaction between SP1 and ZF5 in SIRT1-silenced cells. Therefore, we speculate that acetylated ZF5 cannot bind and sequester SP1 that is free, then, to increase SIRT3 transcription. In conclusion, we demonstrate that cells with low SIRT1 levels can maintain their resistance and survival by increasing SIRT3 expression. J. Cell. Physiol. 232: 1835-1844, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Etopósido/farmacología , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Sirtuina 1/metabolismo , Sirtuina 3/metabolismo , Acetilación/efectos de los fármacos , Animales , Línea Celular Tumoral , Citoprotección/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Células HEK293 , Humanos , Espacio Intracelular/metabolismo , Ratones , Modelos Biológicos , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción Sp1/metabolismo
8.
Environ Monit Assess ; 188(8): 477, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27447714

RESUMEN

The renowned Vitis vinifera L. cultivar "Glera" (Magnoliopsida Vitaceae) has been grown for hundreds of years in the Italian regions of Veneto and Friuli to produce the sparkling Prosecco wine, with controlled designation of origin (DOC). We evaluated the relationship among the concentrations of rare earth elements (REE) in soil and in "Glera" grape berries in vineyards belonging to five different localities in the Veneto alluvial plain, all included in the DOC area of Prosecco. The concentration of REE in samples of soil and juice or solid residues of grape berries was determined by inductively coupled plasma mass spectrometry (ICP-MS), and the index of bioaccumulation was calculated to define the specific assimilation of these elements from soil to grape berries. The concentration of REE in soil samples allowed an identification of each locality examined, and REE were mostly detected in solid grape berry residues in comparison to juice. These data may be useful to associate REE distribution in soil and grape berries to a specific geographical origin, in order to prevent fraudulent use of wine denomination labels.


Asunto(s)
Monitoreo del Ambiente/métodos , Frutas/química , Metales de Tierras Raras/análisis , Suelo/química , Vitis/química , Vino , Frutas/crecimiento & desarrollo , Italia , Vitis/crecimiento & desarrollo , Vino/análisis , Vino/normas
9.
Environ Monit Assess ; 188(4): 211, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26951448

RESUMEN

The present geochemical study concerns the impact of viticultural practices in the chemical composition of the grape cultivar "Negroamaro" in Apulia, a southern Italian region renowned for its quality wine. Three types of soil management (SM), two cover cropping with different mixtures, and a soil tillage were considered. For each SM, the vines were irrigated according to two irrigation levels. Chemical composition of soil and of berries of Vitis vinifera cultivar "Negroamaro" were analyzed by X-ray fluorescence, inductively coupled plasma-mass spectrometry and multivariate statistics (linear discrimination analysis). In detail, we investigated major and trace elements behavior in the soil according to irrigation levels, the related index of bioaccumulation (BA) and the relationship between trace element concentration and soil management in "Negroamaro" grapes. The results indicate that soil management affects the mobility of major and trace elements. A specific assimilation of these elements in grapes from vines grown under different soil management was confirmed by BA. Multivariate statistics allowed to associate the vines to the type of soil management. This geochemical characterization of elements could be useful to develop fingerprints of vines of the cultivar "Negroamaro" according to soil management and geographical origin.


Asunto(s)
Agricultura/métodos , Monitoreo del Ambiente , Oligoelementos/análisis , Vitis/química , Frutas/química , Suelo/química , Vino/análisis
10.
Brain Sci ; 14(5)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38790454

RESUMEN

Rotenone is a pesticide used in research for its ability to induce changes similar, in vivo and in vitro, to those observed in Parkinson's disease (PD). This includes a selective death of dopaminergic neurons in the substantia nigra. Nonetheless, the precise mechanism through which rotenone modifies structure and function of neurons remains unclear. The PC12 cells closely resemble dopamine terminal neurons. This makes it a preferred model for studying the morphology of central dopamine neurons and predicting neurotoxicity. In this paper, we investigated the effects of 0.5 µM rotenone for 24-48 h on PC12 cell viability and ultrastructure (TEM), trying to identify primary and more evident alterations that can be related to neuronal damages similar to that seen in animal PD models. Cell viability decreased after 24 h rotenone treatment, with a further decrease after 48 h. Ultrastructural changes included vacuolar degeneration, mitochondrial mild swelling, decrease in the number of neuropeptide granules, and the loss of cell-to-cell adhesion. These findings are in agreement with previous research suggesting that rotenone, by inhibiting energy production and increasing ROS generation, is responsible for significant alterations of the ultrastructure and cell death of PC12 cells. Our data confirm the link between rotenone exposure, neuronal damage, and changes in dopamine metabolism, suggesting its role in the pathogenesis of PD.

11.
Commun Biol ; 7(1): 948, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107399

RESUMEN

Acinetobacter baumannii is a critical opportunistic pathogen associated with nosocomial infections. The high rates of antibiotic-resistance acquisition make most antibiotics ineffective. Thus, new medical countermeasures are urgently needed. Outer membrane proteins (OMPs) are prime candidates for developing novel drug targets and antibacterial strategies. However, there are substantial gaps in our knowledge of A. baumannii OMPs. This study reports the impact of OmpA-like protein on bacterial physiology and virulence in A. baumannii strain AB5075. We found that PsaB (ABUW_0505) negatively correlates to stress tolerance, while ArfA (ABUW_2730) significantly affects bacterial stiffness, cell shape, and cell envelope thickness. Furthermore, we expand our knowledge on YiaD (ABUW_3045), demonstrating structural and virulence roles of this porin, in addition to meropenem resistance. This study provides solid foundations for understanding how uncharacterized OMPs contribute to A. baumannii's physiological and pathological processes, aiding the development of innovative therapeutic strategies against A. baumannii infections.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Proteínas de la Membrana Bacteriana Externa , Porinas , Acinetobacter baumannii/patogenicidad , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/fisiología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Virulencia , Antibacterianos/farmacología , Porinas/metabolismo , Porinas/genética , Infecciones por Acinetobacter/microbiología , Infecciones por Acinetobacter/tratamiento farmacológico , Animales , Farmacorresistencia Bacteriana , Ratones , Pruebas de Sensibilidad Microbiana , Femenino
12.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38931477

RESUMEN

Cancer cells modulate their metabolism, creating an acidic microenvironment that, in turn, can favor tumor progression and chemotherapy resistance. Tumor cells adopt strategies to survive a drop in extracellular pH (pHe). In the present manuscript, we investigated the contribution of mitochondrial sirtuin 3 (SIRT3) to the adaptation and survival of cancer cells to a low pHe. SIRT3-overexpressing and silenced breast cancer cells MDA-MB-231 and human embryonic kidney HEK293 cells were grown in buffered and unbuffered media at pH 7.4 and 6.8 for different times. mRNA expression of SIRT3 and CAVB, was measured by RT-PCR. Protein expression of SIRT3, CAVB and autophagy proteins was estimated by western blot. SIRT3-CAVB interaction was determined by immunoprecipitation and proximity ligation assays (PLA). Induction of autophagy was studied by western blot and TEM. SIRT3 overexpression increases the survival of both cell lines. Moreover, we demonstrated that SIRT3 controls intracellular pH (pHi) through the regulation of mitochondrial carbonic anhydrase VB (CAVB). Interestingly, we obtained similar results by using MC2791, a new SIRT3 activator. Our results point to the possibility of modulating SIRT3 to decrease the response and resistance of tumor cells to the acidic microenvironment and ameliorate the effectiveness of anticancer therapy.

13.
Front Endocrinol (Lausanne) ; 15: 1340188, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38455658

RESUMEN

Introduction: Fabry's disease (FD) is a genetic X-linked systemic and progressive rare disease characterized by the accumulation of globotriaosylceramide (GB3) into the lysosomes of many tissues. FD is due to loss-of-function mutations of α-galactosidase, a key-enzyme for lysosomal catabolism of glycosphingolipids, which accumulate as glycolipid bodies (GB). In homozygous males the progressive deposition of GB3 into the cells leads to clinical symptoms in CNS, skin, kidney, etc. In testis GB accumulation causes infertility and alterations of spermatogenesis. However, the precise damaging mechanism is still unknown. Our hypothesis is that GB accumulation reduces blood vessel lumen and increases the distance of vessels from both stromal cells and seminiferous parenchyma; this, in turn, impairs oxygen and nutrients diffusion leading to subcellular degradation of seminiferous epithelium and sterility. Methods: To test this hypothesis, we have studied a 42-year-old patient presenting a severe FD and infertility, with reduced number of spermatozoa, but preserved sexual activity. Testicular biopsies were analyzed by optical (OM) and transmission electron microscopy (TEM). Activation and cellular localization of HIF-1α and NFκB was analyzed by immunofluorescence (IF) and RT-PCR on homogeneous tissue fractions after laser capture microdissection (LCMD). Results: OM and TEM showed that GB were abundant in vessel wall cells and in interstitial cells. By contrast, GB were absent in seminiferous epithelium, Sertoli's and Leydig's cells. However, seminiferous tubular epithelium and Sertoli's cells showed reduced diameter, thickening of basement membrane and tunica propria, and swollen or degenerated spermatogonia. IF showed an accumulation of HIF-1α in stromal cells but not in seminiferous tubules. On the contrary, NFκB fluorescence was evident in tubules, but very low in interstitial cells. Finally, RT-PCR analysis on LCMD fractions showed the expression of pro-inflammatory genes connected to the HIF-1α/NFκB inflammatory-like pathway. Conclusion: Our study demonstrates that infertility in FD may be caused by reduced oxygen and nutrients due to GB accumulation in blood vessels cells. Reduced oxygen and nutrients alter HIF-1α/NFκB expression and localization while activating HIF-1α/NFκB driven-inflammation-like response damaging seminiferous tubular epithelium and Sertoli's cells.


Asunto(s)
Enfermedad de Fabry , Infertilidad , Adulto , Humanos , Masculino , Enfermedad de Fabry/complicaciones , Enfermedad de Fabry/patología , Hipoxia/patología , Infertilidad/patología , Inflamación/complicaciones , Inflamación/patología , Oxígeno , Testículo/patología
14.
J Am Heart Assoc ; 13(8): e032734, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38563373

RESUMEN

BACKGROUND: The limited ability of enzyme replacement therapy (ERT) in removing globotriaosylceramide from cardiomyocytes is recognized for advanced Fabry disease cardiomyopathy (FDCM). Prehypertrophic FDCM is believed to be cured or stabilized by ERT. However, no pathologic confirmation is available. We report here on the long-term clinical-pathologic impact of ERT on prehypertrophic FDCM. METHODS AND RESULTS: Fifteen patients with Fabry disease with left ventricular maximal wall thickness ≤10.5 mm at cardiac magnetic resonance required endomyocardial biopsy because of angina and ventricular arrhythmias. Endomyocardial biopsy showed coronary small-vessel disease in the angina cohort, and vacuoles in smooth muscle cells and cardiomyocytes ≈20% of the cell surface containing myelin bodies at electron microscopy. Patients received α-agalsidase in 8 cases, and ß-agalsidase in 7 cases. Both groups experienced symptom improvement except 1 patients treated with α-agalsidase and 1 treated with ß-agalsidase. After ERT administration ranging from 4 to 20 years, all patients had control cardiac magnetic resonance and left ventricular endomyocardial biopsy because of persistence of symptoms or patient inquiry on disease resolution. In 13 asymptomatic patients with FDCM, left ventricular maximal wall thickness and left ventricular mass, cardiomyocyte diameter, vacuole surface/cell surface ratio, and vessels remained unchanged or minimally increased (left ventricular mass increased by <2%) even after 20 years of observation, and storage material was still present at electron microscopy. In 2 symptomatic patients, FDCM progressed, with larger and more engulfed by globotriaosylceramide myocytes being associated with myocardial virus-negative lymphocytic inflammation. CONCLUSIONS: ERT stabilizes storage deposits and myocyte dimensions in 87% of patients with prehypertrophic FDCM. Globotriaosylceramide is never completely removed even after long-term treatment. Immune-mediated myocardial inflammation can overlap, limiting ERT activity.


Asunto(s)
Cardiomiopatías , Enfermedad de Fabry , Cardiopatías , Miocarditis , Trihexosilceramidas , Humanos , Enfermedad de Fabry/complicaciones , Enfermedad de Fabry/tratamiento farmacológico , Enfermedad de Fabry/patología , alfa-Galactosidasa/uso terapéutico , alfa-Galactosidasa/metabolismo , Terapia de Reemplazo Enzimático/métodos , Cardiomiopatías/etiología , Cardiomiopatías/complicaciones , Miocitos Cardíacos/metabolismo , Miocarditis/inducido químicamente , Angina de Pecho/complicaciones , Cardiopatías/complicaciones , Inflamación/metabolismo
15.
J Agric Food Chem ; 72(13): 7383-7396, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38526294

RESUMEN

The need to reduce the use of pesticides in viticulture is increasing the interest in wines produced using fungal-resistant grapevine varieties, which are characterized by relevant contents of both monoglucoside and diglucoside anthocyanins. Aging in wooden barrels induces oxygen permeation into wine, but little is known about diglucoside anthocyanin evolution. Cabernet cortis wine was subjected to addition of oxygen and oak chips, and the anthocyanin changes were followed for 1 month. Decreases of 90% total monoglucosides, 80% acylated monoglucosides, 65% diglucosides, and 90% acylated diglucosides were observed. Monoglucosides formed pyranoanthocyanins, and the lower steric hindrance favored their polymerization with flavanols. Instead, the decrease in diglucosides was correlated to the number of hydroxyl groups of ring B, indicating the predominant oxidation of aglycones. However, three flavonol-anthocyanin-diglucoside derivatives named (epi)catechin-ethyl-Mv-dihexoside, (epi)catechin-ethyl-Pn-dihexoside, and (epi)catechin-Mv-dihexoside A-type were identified in wine for the first time. These research findings are useful for tuning suitable oenological practices to stabilize the color of these wines (type of barrel, aging times, oxygenation practices) and lower the malvin content, which currently is recommended by the OIV at a maximum of 15 mg/L and is a critical issue for their commercialization.


Asunto(s)
Catequina , Vitis , Vino , Vino/análisis , Antocianinas/análisis , Oxígeno , Estrés Oxidativo , Hongos
17.
Biomedicines ; 12(5)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38791022

RESUMEN

Darier disease (DD) is an autosomal dominant disorder due to pathogenic variants of the ATP2A2 gene that causes an isolated skin manifestation based on keratinocyte disconnection and apoptosis. Systemic manifestations of DD have not been demonstrated so far, although a high incidence of neuropsychiatric syndromes suggests an involvement of the central nervous system. We report that the pathogenic ATP2A2 gene variant c.118G>A may cause cardiac involvement in patients with DD, consisting of keratinocyte and cardiomyocyte disconnection. Their common pathologic pathway, still unreported, was documented by both skin and left ventricular endomyocardial biopsies because cardiac dilatation and dysfunction appeared several decades after skin manifestations. Keratinocyte disconnection was paralleled by cardiomyocyte separation at the lateral junction. Cardiomyocyte separation was associated with cell disarray, sarcoplasmic reticulum dilatation, and increased myocyte apoptosis. Clinically, hyperkeratotic skin papules are associated with chest pain, severe muscle exhaustion, and ventricular arrhythmias that improved following administration of aminophylline, a phosphodiesterase inhibitor enhancing SERCA2 protein phosphorylation. Cardiac pathologic changes are similar to those documented in the skin, including cardiomyocyte disconnection that promotes precordial pain and cardiac arrhythmias. Phosphodiesterase inhibitors that enhance SERCA2 protein phosphorylation may substantially attenuate the symptoms.

18.
J Cell Physiol ; 228(8): 1754-61, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23359486

RESUMEN

The following study demonstrated that, in in vitro differentiated neurons, SIRT1 silencing induced an increase of IGF-1 protein expression and secretion and of IGF-1R protein levels which, in turn, prolonged neuronal cell survival in presence of an apoptotic insult. On the contrary, SIRT1 overexpression increased cell death. In particular, IGF-1 and IGF-1R expression levels were negatively regulated by SIRT1. In SIRT1 silenced cells, the increase in IGF-1 and IGF-1R expression was associated to an increase in AKT and ERK1/2 phosphorylation. Moreover, neuronal differentiation was reduced in SIRT1 overexpressing cells and increased in SIRT1 silenced cells. We conclude that SIRT1 silenced neurons appear more committed to differentiation and more resistant to cell death through the activation of IGF-1 survival pathway.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/metabolismo , Neuronas/citología , Neuronas/metabolismo , Transducción de Señal , Sirtuina 1/antagonistas & inhibidores , Sirtuina 1/genética , Animales , Muerte Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular , Supervivencia Celular , Regulación hacia Abajo/genética , Ratones , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores , ARN Interferente Pequeño/genética , Ratas , Receptor IGF Tipo 1/antagonistas & inhibidores , Receptor IGF Tipo 1/metabolismo , Transducción de Señal/genética , Regulación hacia Arriba/genética
19.
J Clin Med ; 12(12)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37373761

RESUMEN

BACKGROUND: Fabry disease cardiomyopathy (FDCM) has manifested some resistance to enzyme replacement therapy (ERT), particularly in its advanced phase. Recently, myocardial inflammation of autoimmune origin has been demonstrated in FDCM. AIMS: The objective of this study was the assessment of circulating anti-globotriaosylceramide (GB3) antibodies as potential biomarkers of myocardial inflammation in FDCM, defined by the additional presence of ≥CD3+ 7 T lymphocytes/low-power field associated with focal necrosis of adjacent myocytes. Its sensitivity was based on the evidence of overlapping myocarditis at left ventricular endomyocardial biopsy. METHODS AND RESULTS: From January 1996 to December 2021, 85 patients received a histological diagnosis of FDCM in our department and 48 (56.5%) of them had an overlapping myocardial inflammation with negative PCR for common cardiotropic viruses, positive antiheart, and antimyosin abs. The presence of anti-GB3 antibodies was evaluated with an in-house ELISA assay (BioGeM scarl Medical Investigational Research, MIR-Ariano Irpino, Italy), along with antiheart and antimyosin abs, in the FDCM patients and compared with control healthy individuals. The correlation between levels of circulating anti-GB3 autoantibody myocardial inflammation and FDCM severity was assessed. Anti-Gb3 antibodies were above the positivity cut-off in 87.5% of FDCM subjects with myocarditis (42 out of 48), while 81.1% of FDCM patients without myocarditis were identified as negative for Gb3 antibodies. Positive anti-Gb3 abs correlated with positive antiheart and antimyosin abs. CONCLUSIONS: The present study suggests a potential positive role of anti-GB3 antibodies as a marker of overlapping cardiac inflammation in patients with FDCM.

20.
Antioxidants (Basel) ; 12(8)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37627630

RESUMEN

Cancer cells show increased glutamine consumption. The glutaminase (GLS) enzyme controls a limiting step in glutamine catabolism. Breast tumors, especially the triple-negative subtype, have a high expression of GLS. Our recent study demonstrated that GLS activity and ammonia production are inhibited by sirtuin 5 (SIRT5). We developed MC3138, a selective SIRT5 activator. Treatment with MC3138 mimicked the deacetylation effect mediated by SIRT5 overexpression. Moreover, GLS activity was regulated by inorganic phosphate (Pi). Considering the interconnected roles of GLS, SIRT5 and Pi in cancer growth, our hypothesis is that activation of SIRT5 and reduction in Pi could represent a valid antitumoral strategy. Treating cells with MC3138 and lanthanum acetate, a Pi chelator, decreased cell viability and clonogenicity. We also observed a modulation of MAP1LC3B and ULK1 with MC3138 and lanthanum acetate. Interestingly, inhibition of the mitophagy marker BNIP3 was observed only in the presence of MC3138. Autophagy and mitophagy modulation were accompanied by an increase in cytosolic and mitochondrial reactive oxygen species (ROS). In conclusion, our results show how SIRT5 activation and/or Pi binding can represent a valid strategy to inhibit cell proliferation by reducing glutamine metabolism and mitophagy, leading to a deleterious accumulation of ROS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA