Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Inherit Metab Dis ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38503330

RESUMEN

Citrin deficiency is an autosomal recessive disorder caused by a defect of citrin resulting from mutations in SLC25A13. The clinical manifestation is very variable and comprises three types: neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD: OMIM 605814), post-NICCD including failure to thrive and dyslipidemia caused by citrin deficiency, and adult-onset type II citrullinemia (CTLN2: OMIM 603471). Frequently, NICCD can run with a mild clinical course and manifestations may resolve in the post-NICCD. However, a subset of patients may develop CTLN2 when they become more than 18 years old, and this condition is potentially life-threatening. Since a combination of diet with low-carbohydrate and high-fat content supplemented with medium-chain triglycerides is expected to ameliorate most manifestations and to prevent the progression to CTLN2, early detection and intervention are important and may improve long-term outcome in patients. Moreover, infusion of high sugar solution and/or glycerol may be life-threatening in patients with citrin deficiency, particularly CTLN2. The disease is highly prevalent in East Asian countries but is more and more recognized as a global entity. Since newborn screening for citrin deficiency has only been introduced in a few countries, the diagnosis still mainly relies on clinical suspicion followed by genetic testing or selective metabolic screening. This paper aims at describing (1) the different stages of the disease focusing on clinical aspects; (2) the current published clinical situation in East Asia, Europe, and North America; (3) current efforts in increasing awareness by establishing management guidelines and patient registries, hereby illustrating the ongoing development of a global network for this rare disease.

2.
Phys Rev E ; 109(3-1): 034123, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38632800

RESUMEN

Resetting is a renewal mechanism in which a process is intermittently repeated after a random or fixed time. This simple act of stop and repeat profoundly influences the behavior of a system as exemplified by the emergence of nonequilibrium properties and expedition of search processes. Herein we explore the ramifications of stochastic resetting in the context of a single-file system called random average process (RAP) in one dimension. In particular, we focus on the dynamics of tracer particles and analytically compute the variance, equal time correlation, autocorrelation, and unequal time correlation between the positions of different tracer particles. Our study unveils that resetting gives rise to rather different behaviors depending on whether the particles move symmetrically or asymmetrically. For the asymmetric case, the system for instance exhibits a long-range correlation which is not seen in absence of the resetting. Similarly, in contrast to the reset-free RAP, the variance shows distinct scalings for symmetric and asymmetric cases. While for the symmetric case, it decays (towards its steady value) as ∼e^{-rt}/sqrt[t], we find ∼te^{-rt} decay for the asymmetric case (r being the resetting rate). Finally, we examine the autocorrelation and unequal time correlation in the steady state and demonstrate that they obey interesting scaling forms at late times. All our analytical results are substantiated by extensive numerical simulations.

3.
bioRxiv ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38260514

RESUMEN

The Repeat Expansion Diseases (REDs) arise from the expansion of a disease-specific short tandem repeat (STR). Different REDs differ with respect to the repeat involved, the cells that are most expansion prone and the extent of expansion. Furthermore, whether these diseases share a common expansion mechanism is unclear. To date, expansion has only been studied in a limited number of REDs. Here we report the first studies of the expansion mechanism in induced pluripotent stem cells derived from a patient with a form of the glutaminase deficiency disorder known as Global Developmental Delay, Progressive Ataxia, And Elevated Glutamine (GDPAG; OMIM# 618412) caused by the expansion of a CAG-STR in the 5' UTR of the glutaminase (GLS) gene. We show that alleles with as few as ~120 repeats show detectable expansions in culture despite relatively low levels of R-loops formed at this locus. Additionally, using a CRISPR-Cas9 knockout approach we show that PMS2 and MLH3, the constituents of MutLα and MutLγ, the 2 mammalian MutL complexes known to be involved in mismatch repair (MMR), are essential for expansion. Furthermore, PMS1, a component of a less well understood MutL complex, MutLß, is also important, if not essential, for repeat expansion in these cells. Our results provide insights into the factors important for expansion and lend weight to the idea that, despite some differences, the same mechanism is responsible for expansion in many, if not all, REDs.

4.
Sci Rep ; 14(1): 13772, 2024 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877099

RESUMEN

The Repeat Expansion Diseases (REDs) arise from the expansion of a disease-specific short tandem repeat (STR). Different REDs differ with respect to the repeat involved, the cells that are most expansion prone and the extent of expansion. Furthermore, whether these diseases share a common expansion mechanism is unclear. To date, expansion has only been studied in a limited number of REDs. Here we report the first studies of the expansion mechanism in induced pluripotent stem cells derived from a patient with a form of the glutaminase deficiency disorder known as Global Developmental Delay, Progressive Ataxia, And Elevated Glutamine (GDPAG; OMIM# 618412) caused by the expansion of a CAG-STR in the 5' UTR of the glutaminase (GLS) gene. We show that alleles with as few as ~ 120 repeats show detectable expansions in culture despite relatively low levels of R-loops formed at this locus. Additionally, using a CRISPR-Cas9 knockout approach we show that PMS2 and MLH3, the constituents of MutLα and MutLγ, the 2 mammalian MutL complexes known to be involved in mismatch repair (MMR), are essential for expansion. Furthermore, PMS1, a component of a less well understood MutL complex, MutLß, is also important, if not essential, for repeat expansion in these cells. Our results provide insights into the factors important for expansion and lend weight to the idea that, despite some differences, the same mechanism is responsible for expansion in many, if not all, REDs.


Asunto(s)
Glutaminasa , Células Madre Pluripotentes Inducidas , Expansión de Repetición de Trinucleótido , Humanos , Glutaminasa/genética , Glutaminasa/metabolismo , Expansión de Repetición de Trinucleótido/genética , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas MutL/genética , Proteínas MutL/metabolismo , Sistemas CRISPR-Cas
5.
Nutr. hosp ; 35(1): 237-244, ene.-feb. 2018. tab, graf
Artículo en Inglés | IBECS (España) | ID: ibc-172112

RESUMEN

Introduction: 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) lyase deficiency is an autosomal recessive disorder that usually presents in the neonatal period with vomiting, metabolic acidosis, hypoglycemia and absent ketonuria. Few cases are reported in the literature, and optimal dietary management and long term outcome are not fully understood. Case report: We report a 2 year old girl with HMG-CoA-lyase deficiency who had limited fasting tolerance on a low protein diet, with several recurrent hospital admissions with severe hypoketotic hypoglycaemia and metabolic acidosis. We also review the dietary management and outcome of other reported cases in the literature. Discussion: In order to define optimal dietary treatment, it is important to collect higher numbers of case studies with detailed dietary management, fasting times and outcome (AU)


Introducción: la deficiencia de la 3-hidroxi-3-metilglutaril-CoA (HMG-CoA) liasa es un desorden autosómico recesivo que normalmente se presenta en la infancia con vómitos, acidosis metabólica, hipoglicemia y sin cetonuria. Se han publicado pocos casos en la literatura científica sobre el mejor tratamiento dietético para el adecuado desarrollo de los pacientes a largo plazo, por lo que esta deficiencia no es bien conocida. Caso clínico: presentamos una niña de 2 años con deficiencia de la 3-hidroxi-3-metilglutaril-CoA (HMG-CoA) liasa. Recibiendo una dieta baja en proteína con una tolerancia de ayuno limitada con episodios recurrentes de admisión hospitalaria con hipoglicemia hipoketotica y acidosis metabólica. También hemos revisado el tratamiento dietético y el desarrollo de otros casos publicados en la literatura científica. Discusión: es importante recoger más casos clínicos describiendo el tratamiento dietético seguido, el tiempo máximo de ayuno y el desarrollo de los pacientes con el objetivo de definir el mejor tratamiento (AU)


Asunto(s)
Humanos , Femenino , Lactante , Hidroximetilglutaril-CoA Sintasa/deficiencia , Errores Innatos del Metabolismo/dietoterapia , Cetosis/dietoterapia , Leucina/efectos adversos , Grasas de la Dieta/efectos adversos , Hipoglucemia/dietoterapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA