Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 35(10): e21852, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34499774

RESUMEN

Postoperative pain and delayed healing in surgical wounds, which require complex management strategies have understudied complicated mechanisms. Here we investigated temporal changes in behavior, tissue structure, and transcriptomic profiles in a rat model of a surgical incision, using hyperalgesic behavioral tests, histological analyses, and next-generation RNA sequencing, respectively. The most rapidly (1 hour) expressed genes were the chemokines, Cxcl1 and Cxcl2. Consequently, infiltrating leukocytes were abundantly observed starting at 6 and peaking at 24 hours after incising which was supported by histological analysis and appearance of the neutrophil markers, S100a8 and S100a9. At this time, hyperalgesia was at a peak and overall transcriptional activity was most highly activated. At the 1-day timepoint, Nppb, coding for natriuretic peptide precursor B, was the most strongly upregulated gene and was localized by in situ hybridization to the epidermal keratinocytes at the margins of the incision. Nppb was basically unaffected in a peripheral inflammation model transcriptomic dataset. At the late phase of wound healing, five secreted, incision-specific peptidases, Mmp2, Aebp1, Mmp23, Adamts7, and Adamtsl1, showed increased expression, supporting the idea of a sustained tissue remodeling process. Transcripts that are specifically upregulated at each timepoint in the incision model may be potential candidates for either biomarkers or therapeutic targets for wound pain and wound healing. This study incorporates the examination of longitudinal temporal molecular responses, corresponding anatomical localization, and hyperalgesic behavioral alterations in the surgical incision model that together provide important and novel foundational knowledge to understand mechanisms of wound pain and wound healing.


Asunto(s)
Hiperalgesia/patología , Dolor Postoperatorio/patología , Placa Plantar/fisiología , RNA-Seq/métodos , Herida Quirúrgica/complicaciones , Transcriptoma , Cicatrización de Heridas , Animales , Conducta Animal , Edema/etiología , Edema/metabolismo , Edema/patología , Hiperalgesia/etiología , Hiperalgesia/metabolismo , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Masculino , Dolor Postoperatorio/etiología , Dolor Postoperatorio/metabolismo , Ratas , Ratas Sprague-Dawley
2.
Anesthesiology ; 128(3): 620-635, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29271803

RESUMEN

BACKGROUND: Peripheral nociceptors expressing the ion channel transient receptor potential cation channel, subfamily V, member 1, play an important role in mediating postoperative pain. Signaling from these nociceptors in the peri- and postoperative period can lead to plastic changes in the spinal cord and, when controlled, can yield analgesia. The transcriptomic changes in the dorsal spinal cord after surgery, and potential coupling to transient receptor potential cation channel, subfamily V, member 1-positive nociceptor signaling, remain poorly studied. METHODS: Resiniferatoxin was injected subcutaneously into rat hind paw several minutes before surgical incision to inactivate transient receptor potential cation channel, subfamily V, member 1-positive nerve terminals. The effects of resiniferatoxin on postincisional measures of pain were assessed through postoperative day 10 (n = 51). Transcriptomic changes in the dorsal spinal cord, with and without peripheral transient receptor potential cation channel, subfamily V, member 1-positive nerve terminal inactivation, were assessed by RNA sequencing (n = 22). RESULTS: Peripherally administered resiniferatoxin increased thermal withdrawal latency by at least twofold through postoperative day 4, increased mechanical withdrawal threshold by at least sevenfold through postoperative day 2, and decreased guarding score by 90% relative to vehicle control (P < 0.05). Surgical incision induced 70 genes in the dorsal horn, and these changes were specific to the ipsilateral dorsal horn. Gene induction with surgical incision persisted despite robust analgesia from resiniferatoxin pretreatment. Many of the genes induced were related to microglial activation, such as Cd11b and Iba1. CONCLUSIONS: A single subcutaneous injection of resiniferatoxin before incision attenuated both evoked and nonevoked measures of postoperative pain. Surgical incision induced transcriptomic changes in the dorsal horn that persisted despite analgesia with resiniferatoxin, suggesting that postsurgical pain signals can be blocked without preventing transcription changes in the dorsal horn.


Asunto(s)
Analgesia/métodos , Diterpenos/administración & dosificación , Dolor Postoperatorio , Médula Espinal/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Masculino , Ratas , Ratas Sprague-Dawley , Asta Dorsal de la Médula Espinal/efectos de los fármacos
3.
Cephalalgia ; 38(5): 912-932, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28699403

RESUMEN

Background The trigeminal ganglion contains neurons that relay sensations of pain, touch, pressure, and many other somatosensory modalities to the central nervous system. The ganglion is also a reservoir for latent herpes virus 1 infection. To gain a better understanding of molecular factors contributing to migraine and headache, transcriptome analyses were performed on postmortem human trigeminal ganglia. Methods RNA-Seq measurements of gene expression were conducted on small sub-regions of 16 human trigeminal ganglia. The samples were also characterized for transcripts derived from viral and microbial genomes. Herpes simplex virus 1 (HSV-1) antibodies in blood were measured using the luciferase immunoprecipitation assay. Results Observed molecular heterogeneity could be explained by sampling of anatomically distinct sub-regions of the excised ganglia consistent with neurally-enriched and non-neural, i.e. Schwann cell, enriched subregions. The levels of HSV-1 transcripts detected in trigeminal ganglia correlated with blood levels of HSV-1 antibodies. Multiple migraine susceptibility genes were strongly expressed in neurally-enriched trigeminal samples, while others were expressed in blood vessels. Conclusions These data provide a comprehensive human trigeminal transcriptome and a framework for evaluation of inhomogeneous post-mortem tissues through extensive quality control and refined downstream analyses for RNA-Seq methodologies. Expression profiling of migraine susceptibility genes identified by genetic association appears to emphasize the blood vessel component of the trigeminovascular system. Other genes displayed enriched expression in the trigeminal compared to dorsal root ganglion, and in-depth transcriptomic analysis of the KCNK18 gene underlying familial migraine shows selective neural expression within two specific populations of ganglionic neurons. These data suggest that expression profiling of migraine-associated genes can extend and amplify the underlying neurobiological insights obtained from genetic association studies.


Asunto(s)
Herpesvirus Humano 1/genética , Canales de Potasio/genética , ARN/genética , Análisis de Secuencia de ARN/métodos , Ganglio del Trigémino/patología , Adolescente , Adulto , Autopsia , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ganglio del Trigémino/fisiología , Ganglio del Trigémino/virología , Adulto Joven
4.
Anesth Analg ; 127(1): 263-266, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-28991117

RESUMEN

We investigated the effect of isoflurane on 2 main types of thermal nociceptors: A-δ and C-fibers. Surprisingly, 1% inhaled isoflurane led to a hyperalgesic response to C-fiber thermal stimulation, whereas responses to A-δ thermal stimulation were blunted. We explored the hypothesis that differences in withdrawal behavior are mediated by differential expression of isoflurane-sensitive proteins between these types of thermal nociceptors. Multiple transcriptomic databases of peripheral neurons were integrated to reveal that isoflurane-susceptible proteins Htr3a, Kcna2, and Scn8a were enriched in thermosensitive A-δ neurons. This exploratory analysis highlights the differing role that volatile anesthetics might have on nociceptors in the peripheral nervous system.


Asunto(s)
Anestésicos por Inhalación/administración & dosificación , Perfilación de la Expresión Génica/métodos , Isoflurano/administración & dosificación , Fibras Nerviosas Mielínicas/efectos de los fármacos , Fibras Nerviosas Amielínicas/efectos de los fármacos , Dolor Nociceptivo/prevención & control , Nociceptores/efectos de los fármacos , Administración por Inhalación , Anestésicos por Inhalación/toxicidad , Animales , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Calor , Hiperalgesia/inducido químicamente , Hiperalgesia/genética , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatología , Isoflurano/toxicidad , Canal de Potasio Kv.1.2/genética , Canal de Potasio Kv.1.2/metabolismo , Masculino , Canal de Sodio Activado por Voltaje NAV1.6/genética , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Fibras Nerviosas Mielínicas/metabolismo , Fibras Nerviosas Amielínicas/metabolismo , Dolor Nociceptivo/genética , Dolor Nociceptivo/metabolismo , Dolor Nociceptivo/fisiopatología , Nociceptores/metabolismo , Umbral del Dolor/efectos de los fármacos , Ratas Sprague-Dawley , Tiempo de Reacción/efectos de los fármacos , Receptores de Serotonina 5-HT3/genética , Receptores de Serotonina 5-HT3/metabolismo
6.
Mol Pain ; 13: 1744806917727657, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28814145

RESUMEN

Abstract: Cell deletion approaches to pain directed at either the primary nociceptive afferents or second-order neurons are highly effective analgesic manipulations. Second-order spinal neurons expressing the neurokinin 1 (NK1) receptor are required for the perception of many types of pain. To delete NK1+ neurons for the purpose of pain control, we generated a toxin­peptide conjugate using DTNB-derivatized (Cys0) substance P (SP) and a N-terminally truncated Pseudomonas exotoxin (PE35) that retains the endosome-release and ADP-ribosylation enzymatic domains but with only one free sulfhydryl side chain for conjugation. This allowed generation of a one-to-one product linked by a disulfide bond (SP-PE35). In vitro, Chinese hamster ovary cells stably transfected with the NK1 receptor exhibited specific cytotoxicity when exposed to SP-PE35 (IC50 = 5 × 10−11 M), whereas the conjugate was nontoxic to NK2 and NK3 receptor-bearing cell lines. In vivo studies showed that, after infusion into the spinal subarachnoid space, the toxin was extremely effective in deleting NK1 receptor-expressing cells from the dorsal horn of the spinal cord. The specific cell deletion robustly attenuated thermal and mechanical pain sensations and inflammatory hyperalgesia but did not affect motoric capabilities. NK1 receptor cell deletion and antinociception occurred without obvious lesion of non­receptor-expressing cells or apparent reorganization of primary afferent innervation. These data demonstrate the extraordinary selectivity and broad-spectrum antinociceptive efficacy of this ligand-directed protein therapeutic acting via receptor-mediated endocytosis. The loss of multiple pain modalities including heat and mechanical pinch, transduced by different populations of primary afferents, shows that spinal NK1 receptor-expressing neurons are critical points of convergence in the nociceptive transmission circuit. We further suggest that therapeutic end points can be effectively and safely achieved when SP-PE35 is locally infused, thereby producing a regionally defined analgesia.


Asunto(s)
Exotoxinas/farmacología , Neuronas/metabolismo , Pseudomonas/metabolismo , Receptores de Neuroquinina-1/metabolismo , Animales , Axones/metabolismo , Células CHO , Cricetulus , Hiperalgesia/metabolismo , Dolor/metabolismo , Manejo del Dolor , Sustancia P/metabolismo
7.
J Neurosci ; 34(44): 14717-32, 2014 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-25355224

RESUMEN

Mutations in Kinesin proteins (Kifs) are linked to various neurological diseases, but the specific and redundant functions of the vertebrate Kifs are incompletely understood. For example, Kif5A, but not other Kinesin-1 heavy-chain family members, is implicated in Charcot-Marie-Tooth disease (CMT) and Hereditary Spastic Paraplegia (HSP), but the mechanism of its involvement in the progressive axonal degeneration characteristic of these diseases is not well understood. We report that zebrafish kif5Aa mutants exhibit hyperexcitability, peripheral polyneuropathy, and axonal degeneration reminiscent of CMT and HSP. Strikingly, although kif5 genes are thought to act largely redundantly in other contexts, and zebrafish peripheral neurons express five kif5 genes, kif5Aa mutant peripheral sensory axons lack mitochondria and degenerate. We show that this Kif5Aa-specific function is cell autonomous and is mediated by its C-terminal tail, as only Kif5Aa and chimeric motors containing the Kif5Aa C-tail can rescue deficits. Finally, concurrent loss of the kinesin-3, kif1b, or its adaptor kbp, exacerbates axonal degeneration via a nonmitochondrial cargo common to Kif5Aa. Our results shed light on Kinesin complexity and reveal determinants of specific Kif5A functions in mitochondrial transport, adaptor binding, and axonal maintenance.


Asunto(s)
Axones/metabolismo , Cinesinas/metabolismo , Mitocondrias/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Transporte Axonal/fisiología , Cinesinas/genética , Mitocondrias/genética , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética
8.
J Biol Chem ; 288(42): 30454-30462, 2013 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-24022483

RESUMEN

The cytosolic carboxypeptidases (CCPs) are a subfamily of metalloenzymes within the larger M14 family of carboxypeptidases that have been implicated in the post-translational modification of tubulin. It has been suggested that at least four of the six mammalian CCPs function as tubulin deglutamylases. However, it is not yet clear whether these enzymes play redundant or unique roles within the cell. To address this question, genes encoding CCPs were identified in the zebrafish genome. Analysis by quantitative polymerase chain reaction indicated that CCP1, CCP2, CCP5, and CCP6 mRNAs were detectable between 2 h and 8 days postfertilization with highest levels 5-8 days postfertilization. CCP1, CCP2, and CCP5 mRNAs were predominantly expressed in tissues such as the brain, olfactory placodes, and pronephric ducts. Morpholino oligonucleotide-mediated knockdown of CCP1 and CCP5 mRNA resulted in a common phenotype including ventral body curvature and hydrocephalus. Confocal microscopy of morphant zebrafish revealed olfactory placodes with defective morphology as well as pronephric ducts with increased polyglutamylation. These data suggest that CCP1 and CCP5 play important roles in developmental processes, particularly the development and functioning of cilia. The robust and similar defects upon knockdown suggest that each CCP may have a function in microtubule modification and ciliary function and that other CCPs are not able to compensate for the loss of one.


Asunto(s)
Carboxipeptidasas/biosíntesis , Embrión no Mamífero/embriología , Desarrollo Embrionario/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Proteínas de Pez Cebra/biosíntesis , Pez Cebra/embriología , Animales , Carboxipeptidasas/genética , Cilios/enzimología , Cilios/genética , Especificidad de Órganos/fisiología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
9.
Pain ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38691673

RESUMEN

ABSTRACT: Adenosine receptors are a family of purinergic G protein-coupled receptors that are widely distributed in bodily organs and in the peripheral and central nervous systems. Recently, antihyperalgesic actions have been suggested for the adenosine A3 receptor, and its agonists have been proposed as new neuropathic pain treatments. We hypothesized that these receptors may be expressed in nociceptive primary afferent neurons. However, RNA sequencing across species, eg, rat, mouse, dog, and human, suggests that dorsal root ganglion (DRG) expression of ADORA3 is inconsistent. In rat and mouse, Adora3 shows very weak to no expression in DRG, whereas it is well expressed in human DRG. However, the cell types in human DRG that express ADORA3 have not been delineated. An examination of DRG cell types using in situ hybridization clearly detected ADORA3 transcripts in peripheral macrophages that are in close apposition to the neuronal perikarya but not in peripheral sensory neurons. By contrast, ADORA1 was found primarily in neurons, where it is broadly expressed at low levels. These results suggest that a more complex or indirect mechanism involving modulation of macrophage and/or microglial cells may underlie the potential analgesic action of adenosine A3 receptor agonism.

10.
JCI Insight ; 9(4)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38261410

RESUMEN

Genetic modifications leading to pain insensitivity phenotypes, while rare, provide invaluable insights into the molecular biology of pain and reveal targets for analgesic drugs. Pain insensitivity typically results from Mendelian loss-of-function mutations in genes expressed in nociceptive (pain-sensing) dorsal root ganglion (DRG) neurons that connect the body to the spinal cord. We document a pain insensitivity mechanism arising from gene overexpression in individuals with the rare 7q11.23 duplication syndrome (Dup7), who have 3 copies of the approximately 1.5-megabase Williams syndrome (WS) critical region. Based on parental accounts and pain ratings, people with Dup7, mainly children in this study, are pain insensitive following serious injury to skin, bones, teeth, or viscera. In contrast, diploid siblings (2 copies of the WS critical region) and individuals with WS (1 copy) show standard reactions to painful events. A converging series of human assessments and cross-species cell biological and transcriptomic studies identified 1 likely candidate in the WS critical region, STX1A, as underlying the pain insensitivity phenotype. STX1A codes for the synaptic vesicle fusion protein syntaxin1A. Excess syntaxin1A was demonstrated to compromise neuropeptide exocytosis from nociceptive DRG neurons. Taken together, these data indicate a mechanism for producing "genetic analgesia" in Dup7 and offer previously untargeted routes to pain control.


Asunto(s)
Síndrome de Williams , Niño , Humanos , Ganglios Espinales , Neuronas , Dolor/genética , Transmisión Sináptica , Síndrome de Williams/genética
11.
J Biol Chem ; 287(51): 42900-9, 2012 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-23105115

RESUMEN

Carboxypeptidase A6 (CPA6) is a member of the A/B subfamily of M14 metallocarboxypeptidases that is expressed in brain and many other tissues during development. Recently, two mutations in human CPA6 were associated with febrile seizures and/or temporal lobe epilepsy. In this study we screened for additional CPA6 mutations in patients with febrile seizures and focal epilepsy, which encompasses the temporal lobe epilepsy subtype. Mutations found from this analysis as well as CPA6 mutations reported in databases of single nucleotide polymorphisms were further screened by analysis of the modeled proCPA6 protein structure and the functional role of the mutated amino acid. The point mutations predicted to affect activity and/or protein folding were tested by expression of the mutant in HEK293 cells and analysis of the resulting CPA6 protein. Common polymorphisms in CPA6 were also included in this analysis. Several mutations resulted in reduced enzyme activity or CPA6 protein levels in the extracellular matrix. The mutants with reduced extracellular CPA6 protein levels showed normal levels of 50-kDa proCPA6 in the cell, and this could be converted into 37-kDa CPA6 by trypsin, suggesting that protein folding was not greatly affected by the mutations. Interestingly, three of the mutations that reduced extracellular CPA6 protein levels were found in patients with epilepsy. Taken together, these results provide further evidence for the involvement of CPA6 mutations in human epilepsy and reveal additional rare mutations that inactivate CPA6 and could, therefore, also be associated with epileptic phenotypes.


Asunto(s)
Carboxipeptidasas A/genética , Carboxipeptidasas A/metabolismo , Epilepsia/enzimología , Epilepsia/genética , Predisposición Genética a la Enfermedad , Mutación/genética , Adolescente , Adulto , Alelos , Carboxipeptidasas A/química , Estudios de Casos y Controles , Niño , Demografía , Precursores Enzimáticos/metabolismo , Estabilidad de Enzimas/efectos de los fármacos , Familia , Femenino , Pruebas Genéticas , Células HEK293 , Calor , Humanos , Peróxido de Hidrógeno/farmacología , Masculino , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Polimorfismo de Nucleótido Simple/genética , Tripsina/metabolismo
12.
bioRxiv ; 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37502949

RESUMEN

Filament systems are comprised of fibrous and globular cytoskeletal proteins and are key elements regulating cell shape, rigidity, and dynamics. The cellular localization and assembly of neurofilaments depend on phosphorylation by kinases. The involvement of the BRCA1 (Breast cancer associated protein 1)/BARD1 (BRCA1-associated RING domain 1) pathways in Alzheimer disease (AD) is suggested by colocalization studies. In particular, BRCA1 accumulation within neurofibrillary tangles and colocalization with tau aggregates in the cytoplasm of AD patients implicates the involvement of mutant forms of BRCA1/BARD1 proteins in disease pathogenesis. The purpose of this study is to show that the location of mutations in the translated BARD1, specifically within ankyrin repeats, has strong correlation with the Cdk5 motifs for phosphorylation. Mapping of the mutation sites on the protein's three-dimensional structure and estimation of the backbone dihedral angles show transitions between the canonical helical and extended conformations of the tetrapeptide sequence of ankyrin repeats. Clustering of mutations in BARD1 ankyrin repeats near the N-termini of the helices with T/SXXH motifs provides a basis for conformational transitions that might be necessary to ensure the compatibility of the substrate with active site geometry and accessibility of the substrate to the kinase. Ankyrin repeats are interaction sites for phosphorylation-dependent dynamic assembly of proteins including those involved in transcription regulation and signaling, and present potential targets for the design of new drugs.

13.
Exp Neurol ; 370: 114552, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37793538

RESUMEN

Inherited painless neuropathies arise due to genetic insults that either block the normal signaling of or destroy the sensory afferent neurons in the dorsal root ganglion (DRG) responsible for transducing noxious stimuli. Complete loss of these neurons leads to profound insensitivity to all sensory modalities including pain. Hereditary sensory and autonomic neuropathy type 2 (HSNAII) is a rare genetic neuropathy characterized by a progressive distal early onset sensory loss. This syndrome is caused by autosomal recessive mutations in the with-no-lysine protein kinase 1 (WNK1) serine-threonine kinase gene. Of interest, disease-associated mutations are found in the large exon, termed "HSN2," which encodes a 498 amino acid domain C-terminal to the kinase domain. These mutations lead to truncation of the HSN2-containing proteins through the addition of an early stop codon (nonsense mutation) leading to loss of the C-terminal domains of this large protein. The present study evaluates the transcripts, gene structure, and protein structure of HSN2-containing WNK1 splice variants in DRG and spinal cord in order to establish the basal expression patterns of WNK1 and HSN2-containing WNK1 splice variants using multiplex fluorescent situ hybridization. We hypothesized that these transcripts would be enriched in pain-sensing DRG neurons, and, potentially, that enrichment in nociceptive neurons was responsible for the painless phenotypes observed. However, our in-depth analyses revealed that the HSN2-WNK1 splice variants were ubiquitously expressed but were not enriched in tachykinin 1-expressing C-fiber neurons, a class of neurons with a highly nociceptive character. We subsequently identified other subpopulations of DRG neurons with higher levels of HSN2-WNK1 expression, including mechanosensory large fibers. These data are inconsistent with the hypothesis that this transcript is enriched in nociceptive fibers, and instead suggest it may be related to general axon maintenance, or that nociceptive fibers are more sensitive to the genetic insult. These findings clarify the molecular and cellular expression pattern of this painless neuropathy gene in human tissue.


Asunto(s)
Neuropatías Hereditarias Sensoriales y Autónomas , Proteínas Serina-Treonina Quinasas , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína Quinasa Deficiente en Lisina WNK 1/genética , Ganglios Espinales/metabolismo , Antígenos de Histocompatibilidad Menor/genética , Péptidos y Proteínas de Señalización Intracelular , Lisina/genética , Neuropatías Hereditarias Sensoriales y Autónomas/genética , Dolor
14.
Hum Mutat ; 33(1): 124-35, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21922598

RESUMEN

Febrile seizures (FS) and temporal lobe epilepsy (TLE) were found in four of the seven siblings born to healthy Moroccan consanguineous parents. We hypothesized autosomal recessive (AR) inheritance. Combined linkage analysis and autozygosity mapping of a genome-wide single nucleotide polymorphism genotyping identified a unique identical by descent (IBD) locus of 9.6 Mb on human chromosome 8q12.1-q13.2. Sequencing of the 38 genes mapped within the linked interval revealed a homozygous missense mutation c.809C>T (p.Ala270Val) in the carboxypeptidase A6 gene (CPA6). Screening all exons of CPA6 in unrelated patients with partial epilepsy (n = 195) and FS (n = 145) revealed a new heterozygous missense mutation c.799G>A (p.Gly267Arg) in three TLE patients. Structural modeling of CPA6 indicated that both mutations are located near the enzyme's active site. In contrast to wild-type CPA6, which is secreted and binds to the extracellular matrix where it is enzymatically active, Ala270Val CPA6 was secreted at about 40% of the level of the wild-type CPA6 and was fully active, while Gly267Arg CPA6 was not detected in the medium or extracellular matrix. This study suggests that CPA6 is genetically linked to an AR familial form of FS and TLE, and is associated with sporadic TLE cases.


Asunto(s)
Carboxipeptidasas A/genética , Cromosomas Humanos Par 8/genética , Epilepsias Parciales/genética , Epilepsia del Lóbulo Temporal/genética , Mutación Missense , Convulsiones Febriles/genética , Adolescente , Adulto , Carboxipeptidasas A/metabolismo , Niño , Preescolar , Cromosomas Humanos Par 8/metabolismo , Consanguinidad , Análisis Mutacional de ADN , Epilepsias Parciales/complicaciones , Epilepsias Parciales/enzimología , Epilepsia del Lóbulo Temporal/complicaciones , Epilepsia del Lóbulo Temporal/enzimología , Exones , Femenino , Genes Recesivos , Ligamiento Genético , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Genotipo , Homocigoto , Humanos , Lactante , Masculino , Linaje , Polimorfismo de Nucleótido Simple , Convulsiones Febriles/complicaciones , Convulsiones Febriles/enzimología
15.
J Pain ; 23(10): 1646-1650, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35504570

RESUMEN

The strong need for a new foundational molecular framework for human nervous system research at the nociceptive level is now matched by comprehensive and quantitative capabilities for analyzing nociceptive tissues such as pathologic peripheral tissue, damaged peripheral nerve, dorsal root ganglia, spinal cord, and brain, where possible. However, this idea must be matched by equally strong organization and infrastructures for multisite tissue recovery, molecular analyses, data sharing, and long-term archiving. Experience from other human tissue analysis projects shows that a decades-long activity may be expected, hence "Be in it for the long haul." While certain milestones can be met fairly quickly, others aimed at molecular and neuroanatomical characterization of chronic pain disorders will require the sustained attention of the groups involved. This can yield a valuable addition to basic and translational pain research and the development of new treatments whose targets are validated directly in humans. PERSPECTIVE: A concerted effort is needed to build human nociceptive tissue banks for multi-omic research. In addition to collecting tissue, a careful characterization of pain problems from donors is essential, as is a parallel effort to assess their concurrent medical problems, medications, and the many variables of general human activity and lifestyle that can impact the results. Given the projected long time frame, in addition to maintaining funding, sustaining motivation and momentum are critical factors for success.


Asunto(s)
Dolor Crónico , Ganglios Espinales , Humanos , Médula Espinal
16.
Front Mol Neurosci ; 15: 926596, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35875671

RESUMEN

Primary afferent neurons of the dorsal root ganglia (DRG) transduce peripheral nociceptive signals and transmit them to the spinal cord. These neurons also mediate analgesic control of the nociceptive inputs, particularly through the µ-opioid receptor (encoded by Oprm1). While opioid receptors are found throughout the neuraxis and in the spinal cord tissue itself, intrathecal administration of µ-opioid agonists also acts directly on nociceptive nerve terminals in the dorsal spinal cord resulting in marked analgesia. Additionally, selective chemoaxotomy of cells expressing the TRPV1 channel, a nonselective calcium-permeable ion channel that transduces thermal and inflammatory pain, yields profound pain relief in rats, canines, and humans. However, the relationship between Oprm1 and Trpv1 expressing DRG neurons has not been precisely determined. The present study examines rat DRG neurons using high resolution multiplex fluorescent in situ hybridization to visualize molecular co-expression. Neurons positive for Trpv1 exhibited varying levels of expression for Trpv1 and co-expression of other excitatory and inhibitory ion channels or receptors. A subpopulation of densely labeled Trpv1+ neurons did not co-express Oprm1. In contrast, a population of less densely labeled Trpv1+ neurons did co-express Oprm1. This finding suggests that the medium/low Trpv1 expressing neurons represent a specific set of DRG neurons subserving the opponent processes of both transducing and inhibiting nociceptive inputs. Additionally, the medium/low Trpv1 expressing neurons co-expressed other markers implicated in pathological pain states, such as Trpa1 and Trpm8, which are involved in chemical nociception and cold allodynia, respectively, as well as Scn11a, whose mutations are implicated in familial episodic pain. Conversely, none of the Trpv1+ neurons co-expressed Spp1, which codes for osteopontin, a marker for large diameter proprioceptive neurons, validating that nociception and proprioception are governed by separate neuronal populations. Our findings support the hypothesis that the population of Trpv1 and Oprm1 coexpressing neurons may explain the remarkable efficacy of opioid drugs administered at the level of the DRG-spinal synapse, and that this subpopulation of Trpv1+ neurons is responsible for registering tissue damage.

17.
Front Mol Neurosci ; 15: 892345, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35706427

RESUMEN

Ketamine, an N-methyl-D-aspartate (NMDA)-receptor antagonist, is a recently revitalized treatment for pain and depression, yet its actions at the molecular level remain incompletely defined. In this molecular-pharmacological investigation in the rat, we used short- and longer-term infusions of high dose ketamine to stimulate neuronal transcription processes. We hypothesized that a progressively stronger modulation of neuronal gene networks would occur over time in cortical and limbic pathways. A continuous intravenous administration paradigm for ketamine was developed in rat consisting of short (1 h) and long duration (10 h, and 10 h + 24 h recovery) infusions of anesthetic concentrations to activate or inhibit gene transcription in a pharmacokinetically controlled fashion. Transcription was measured by RNA-Seq in three brain regions: frontal cortex, hippocampus, and amygdala. Cellular level gene localization was performed with multiplex fluorescent in situ hybridization. Induction of a shared transcriptional regulatory network occurred within 1 h in all three brain regions consisting of (a) genes involved in stimulus-transcription factor coupling that are induced during altered synaptic activity (immediate early genes, IEGs, such as c-Fos, 9-12 significant genes per brain region, p < 0.01 per gene) and (b) the Nrf2 oxidative stress-antioxidant response pathway downstream from glutamate signaling (Nuclear Factor Erythroid-Derived 2-Like 2) containing 12-25 increasing genes (p < 0.01) per brain region. By 10 h of infusion, the acute results were further reinforced and consisted of more and stronger gene alterations reflecting a sustained and accentuated ketamine modulation of regional excitation and plasticity. At the cellular level, in situ hybridization localized up-regulation of the plasticity-associated gene Bdnf, and the transcription factors Nr4a1 and Fos, in cortical layers III and V. After 24 h recovery, we observed overshoot of transcriptional processes rather than a smooth return to homeostasis suggesting an oscillation of plasticity occurs during the transition to a new phase of neuronal regulation. These data elucidate critical molecular regulatory actions during and downstream of ketamine administration that may contribute to the unique drug actions of this anesthetic agent. These molecular investigations point to pathways linked to therapeutically useful attributes of ketamine.

18.
Sci Rep ; 12(1): 4729, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35304484

RESUMEN

Pathological sensations caused by peripheral painful neuropathy occurring in Type 2 diabetes mellitus (T2DM) are often described as 'sharp' and 'burning' and are commonly spontaneous in origin. Proposed etiologies implicate dysfunction of nociceptive sensory neurons in dorsal root ganglia (DRG) induced by generation of reactive oxygen species, microvascular defects, and ongoing axonal degeneration and regeneration. To investigate the molecular mechanisms contributing to diabetic pain, DRGs were acquired postmortem from patients who had been experiencing painful diabetic peripheral neuropathy (DPN) and subjected to transcriptome analyses to identify genes contributing to pathological processes and neuropathic pain. DPN occurs in distal extremities resulting in the characteristic "glove and stocking" pattern. Accordingly, the L4 and L5 DRGs, which contain the perikarya of primary afferent neurons innervating the foot, were analyzed from five DPN patients and compared with seven controls. Transcriptome analyses identified 844 differentially expressed genes. We observed increases in levels of inflammation-associated transcripts from macrophages in DPN patients that may contribute to pain hypersensitivity and, conversely, there were frequent decreases in neuronally-related genes. The elevated inflammatory gene profile and the accompanying downregulation of multiple neuronal genes provide new insights into intraganglionic pathology and mechanisms causing neuropathic pain in DPN patients with T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Neuropatías Diabéticas , Neuralgia , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Neuropatías Diabéticas/genética , Ganglios Espinales , Perfilación de la Expresión Génica , Inflamación/genética , Neuralgia/genética , Células Receptoras Sensoriales , Transcriptoma
19.
Front Pharmacol ; 12: 705743, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34421597

RESUMEN

One of the biggest challenges for analgesic drug development is how to decide if a potential analgesic candidate will work in humans. What preclinical data are the most convincing, incentivizing and most predictive of success? Such a predicament is not unique to analgesics, and the pain field has certain advantages over drug development efforts in areas like neuropsychiatry where the etiological origins are either unknown or difficult to ascertain. For pain, the origin of the problem frequently is known, and the causative peripheral tissue insult might be observable. The main conundrum centers around evaluation of translational cell- and rodent-based results. While cell and rodent models are undeniably important first steps for screening, probing mechanism of action, and understanding factors of adsorption, distribution metabolism and excretion, two questions arise from such studies. First, are they reliable indicators of analgesic performance of a candidate drug in human acute and chronic pain? Second, what additional model systems might be capable of increasing translational confidence? We address this second question by assessing, primarily, the companion canine model, which can provide particularly strong predictive information for candidate analgesic agents in humans. This statement is mainly derived from our studies with resiniferatoxin (RTX) a potent TRPV1 agonist but also from protein therapeutics using a conjugate of Substance P and saporin. Our experience, to date, is that rodent models might be very well suited for acute pain translation, but companion canine models, and other large animal studies, can augment initial discovery research using rodent models for neuropathic or chronic pain. The larger animal models also provide strong translational predictive capacity for analgesic performance in humans, better predict dosing parameters for human trials and provide insight into behavior changes (bladder, bowel, mood, etc.) that are not readily assessed in laboratory animals. They are, however, not without problems that can be encountered with any experimental drug treatment or clinical trial. It also is important to recognize that pain treatment is a major veterinary concern and is an intrinsically worthwhile endeavor for animals as well as humans.

20.
J Pain ; 22(3): 322-343, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33227508

RESUMEN

Pain is a common but potentially debilitating symptom, often requiring complex management strategies. To understand the molecular dynamics of peripheral inflammation and nociceptive pain, we investigated longitudinal changes in behavior, tissue structure, and transcriptomic profiles in the rat carrageenan-induced peripheral inflammation model. Sequential changes in the number of differentially expressed genes are consistent with temporal recruitment of key leukocyte populations, mainly neutrophils and macrophages with each wave being preceded by upregulation of the cell-specific chemoattractants, Cxcl1 and Cxcl2, and Ccl2 and Ccl7, respectively. We defined 12 temporal gene clusters based on expression pattern. Within the patterns we extracted genes comprising the inflammatory secretome and others related to nociceptive tissue remodeling and to sensory perception of pain. Structural tissue changes, involving upregulation of multiple collagens occurred as soon as 1-hour postinjection, consistent with inflammatory tissue remodeling. Inflammatory expression profiling revealed a broad-spectrum, temporally orchestrated molecular and cellular recruitment process. The results provide numerous potential targets for modulation of pain and inflammation. PERSPECTIVE: This study investigates the highly orchestrated biological response during tissue inflammation with precise assessment of molecular dynamics at the transcriptional level. The results identify transcriptional changes that define an evolving inflammatory state in rats. This study provides foundational data for identifying markers of, and potential treatments for, inflammation and pain in patients.


Asunto(s)
Perfilación de la Expresión Génica , Hiperalgesia/inmunología , Inmunidad Innata/inmunología , Inflamación/inmunología , Dolor Nociceptivo/inmunología , Secretoma/inmunología , Animales , Carragenina/farmacología , Modelos Animales de Enfermedad , Pie , Hiperalgesia/inducido químicamente , Inflamación/inducido químicamente , Masculino , Dolor Nociceptivo/inducido químicamente , Ratas , Ratas Sprague-Dawley , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA