Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Neurosci Res ; 98(11): 2349-2356, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32856336

RESUMEN

In Huntington's disease (HD), the output of striatal indirect pathway medium-sized spiny neurons (MSNs) is altered in its target region, the external globus pallidus (GPe). In a previous study we demonstrated that selective optogenetic stimulation of indirect pathway MSNs induced prolonged decay time of γ-aminobutyric acid (GABA) responses in GPe neurons. Here we identified the mechanism underlying this alteration. Electrophysiological recordings in slices from symptomatic R6/2 and wildtype (WT) mice were used to evaluate, primarily, the effects of GABA transporter (GAT) antagonists on responses evoked by optogenetic activation of indirect pathway MSNs. In addition, immunohistochemistry (IHC) and Western blots (WBs) were used to examine GAT-3 expression in HD and WT mice. A GAT-3 blocker (SNAP5114) increased decay time of GABA responses in WT and HD GPe neurons, but the effect was significantly greater in WT neurons. In contrast, a GAT-1 antagonist (NO-711) or a GABAB receptor antagonist (CGP 54626) produced small increases in decay time but no differential effects between genotypes. IHC and WBs showed reduction of GAT-3 expression in the GPe of HD mice. Thus, reduced expression or dysfunction of GAT-3 could underlie alterations of GPe responses to GABA inputs from striatum and could be a target for therapeutic intervention.


Asunto(s)
Globo Pálido/metabolismo , Enfermedad de Huntington/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Modelos Animales de Enfermedad , Fenómenos Electrofisiológicos , Femenino , Antagonistas del GABA/farmacología , Proteínas Transportadoras de GABA en la Membrana Plasmática/efectos de los fármacos , Antagonistas de Receptores de GABA-A/farmacología , Genotipo , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Optogenética
2.
J Neurosci Res ; 97(12): 1689-1705, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31420910

RESUMEN

Oligomeric forms of α-synuclein are believed to cause mitochondrial injury, which may contribute to neurotoxicity in Parkinson's disease (PD). Here oligomers of α-synuclein were prepared using the dopamine metabolite, DOPAL (3,4-dihydroxyphenyl-acetaldehyde), in the presence of guanidinium hydrochloride. Electron microscopy, mass spectrometry, and Western blotting studies revealed enhanced and stable oligomerization with DOPAL compared with dopamine or CuCl2 /H2 O2 . Using isolated mouse brain mitochondria, DOPAL-oligomerized α-synuclein (DOS) significantly inhibited oxygen consumption rates compared with untreated, control-fibrillated, and dopamine-fibrillated synuclein, or with monomeric α-synuclein. Inhibition was greater in the presence of malate plus pyruvate than with succinate, suggesting the involvement of mitochondrial complex I. Mitochondrial membrane potential studies using fluorescent probes, JC-1, and Safranin O also detected enhanced inhibition by DOS compared with the other aggregated forms of α-synuclein. Testing a small customized chemical library, four compounds were identified that rescued membrane potential from DOS injury. While diverse in chemical structure and mechanism, each compound has been reported to interact with mitochondrial complex I. Western blotting studies revealed that none of the four compounds disrupted the oligomeric banding pattern of DOS, suggesting their protection involved direct mitochondrial interaction. The remaining set of chemicals also did not disrupt oligomeric banding, attesting to the high structural stability of this α-synuclein proteoform. DOPAL and α-synuclein are both found in dopaminergic neurons, where their levels are elevated in PD and in animal models exposed to chemical toxicants, including agricultural pesticides. The current study provides further evidence of α-synuclein-induced mitochondrial injury and a likely role in PD neuropathology.


Asunto(s)
Dopamina/metabolismo , Mitocondrias/metabolismo , alfa-Sinucleína/metabolismo , Animales , Dopamina/química , Dopamina/farmacología , Femenino , Masculino , Potencial de la Membrana Mitocondrial , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Consumo de Oxígeno , Enfermedad de Parkinson , Agregado de Proteínas/efectos de los fármacos , alfa-Sinucleína/química , alfa-Sinucleína/farmacología , alfa-Sinucleína/ultraestructura
3.
J Neurosci Res ; 95(9): 1871-1887, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28117497

RESUMEN

The α-synuclein protein exists in vivo in a variety of covalently modified and aggregated forms associated with Parkinson's disease (PD) pathology. However, the specific proteoform structures involved with neuropathological disease mechanisms are not clearly defined. Since α-synuclein plays a role in presynaptic neurotransmitter release, an in vitro enzyme-based assay was developed to measure glutamate release from mouse forebrain synaptoneurosomes (SNs) enriched in synaptic endings. Glutamate measurements utilizing SNs from various mouse genotypes (WT, over-expressers, knock-outs) suggested a concentration dependence of α-synuclein on calcium/depolarization-dependent presynaptic glutamate release from forebrain terminals. In vitro reconstitution experiments with recombinant human α-synuclein proteoforms including monomers and aggregated forms (fibrils, oligomers) produced further evidence of this functional impact. Notably, brief exogenous applications of fibrillated forms of α-synuclein enhanced SN glutamate release but monomeric forms did not, suggesting preferential membrane penetration and toxicity by the aggregated forms. However, when applied to brain tissue sections just prior to homogenization, both monomeric and fibrillated forms stimulated glutamate release. Immuno-gold and transmission electron microscopy (TEM) detected exogenous fibrillated α-synuclein associated with numerous SN membranous structures including synaptic terminals. Western blots and immuno-gold TEM were consistent with SN internalization of α-synuclein. Additional studies revealed no evidence of gross disruption of SN membrane integrity or glutamate transporter function by exogenous α-synuclein. Overall excitotoxicity, due to enhanced glutamate release in the face of either overexpressed monomeric α-synuclein or extrasynaptic exposure to fibrillated α-synuclein, should be considered as a potential neuropathological pathway during the progression of PD and other synucleinopathies. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Ácido Glutámico/metabolismo , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/farmacología , Animales , Humanos , Ratones , Enfermedad de Parkinson
4.
Toxicol Lett ; 133(2-3): 171-9, 2002 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-12119125

RESUMEN

We examined the food additive, butylated hydroxyanisole (BHA), for its capacity to modulate the cytotoxic effects of Delta(9)-tetrahydrocannabinol (THC). THC was not cytotoxic when added to cultures of A549 lung tumor cells at concentrations<5 microg/ml, but induced cell necrosis at higher levels with an LC(50)=16-18 microg/ml. BHA alone, at concentrations of 10-200 microM, produced limited cell toxicity but significantly enhanced the necrotic death resulting from concurrent exposure to THC. In the presence of BHA at 200 microM, the LC(50) for THC decreased to 10-12 microg/ml. Similar results were obtained with smoke extracts prepared from marijuana cigarettes, but not with extracts from tobacco or placebo marijuana cigarettes (containing no THC). Two different mechanisms for this synergistic cytotoxicity were investigated. Experiments were repeated in the presence of either diphenyleneiodonium or dicumarol as inhibitors of the redox cycling pathway. Neither of these compounds protected cells from the effects of combined THC and BHA, but rather enhanced necrotic cell death. Measurements of cellular ATP revealed that both THC and BHA reduced ATP levels in A549 cells, consistent with toxic effects on mitochondrial electron transport. The combination was synergistic in this respect, reducing ATP levels to <15% of control. Exposure to marijuana smoke in conjunction with BHA, a common food additive, may promote deleterious health effects in the lung.


Asunto(s)
Hidroxianisol Butilado/toxicidad , Dronabinol/toxicidad , Conservantes de Alimentos/toxicidad , Alucinógenos/toxicidad , Adenosina Trifosfato/metabolismo , Cannabis/química , Muerte Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Colorantes , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , NADPH-Ferrihemoproteína Reductasa/metabolismo , Especies Reactivas de Oxígeno , Breas/toxicidad , Nicotiana/química
5.
PLoS One ; 8(5): e63557, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23667637

RESUMEN

While most forms of Parkinson's Disease (PD) are sporadic in nature, a small percentage of PD have genetic causes as first described for dominant, single base pair changes as well as duplication and triplication in the α-synuclein gene. The α-synuclein gene encodes a 140 amino acid residue protein that interacts with a variety of organelles including synaptic vesicles, lysosomes, endoplasmic reticulum/Golgi vesicles and, reported more recently, mitochondria. Here we examined the structural and functional interactions of human α-synuclein with brain mitochondria obtained from an early, pre-manifest mouse model for PD over-expressing human α-synuclein (ASOTg). The membrane potential in ASOTg brain mitochondria was decreased relative to wildtype (WT) mitochondria, while reactive oxygen species (ROS) were elevated in ASOTg brain mitochondria. No selective interaction of human α-synuclein with mitochondrial electron transport complexes cI-cV was detected. Monomeric human α-synuclein plus carboxyl terminally truncated forms were the predominant isoforms detected in ASOTg brain mitochondria by 2-dimensional PAGE (Native/SDS) and immunoblotting. Oligomers or fibrils were not detected with amyloid conformational antibodies. Mass spectrometry of human α-synuclein in both ASOTg brain mitochondria and homogenates from surgically resected human cortex demonstrated that the protein was full-length and postranslationally modified by N-terminal acetylation. Overall the study showed that accumulation of full-length, N-terminally acetylated human α-synuclein was sufficient to disrupt brain mitochondrial function in adult mice.


Asunto(s)
Envejecimiento/metabolismo , Encéfalo/metabolismo , Mitocondrias/metabolismo , alfa-Sinucleína/metabolismo , Acetilación , Secuencia de Aminoácidos , Amiloide/química , Amiloide/inmunología , Animales , Anticuerpos/metabolismo , Transporte de Electrón , Electroforesis en Gel de Poliacrilamida , Humanos , Espectrometría de Masas , Potencial de la Membrana Mitocondrial , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Solubilidad , Sinapsis/metabolismo , alfa-Sinucleína/química
6.
J Neurosci Methods ; 211(2): 289-95, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23017979

RESUMEN

Brain and primary neuron fractions enriched in synaptic terminals are important tools for neuroscientists in biochemical, neuroanatomical and physiological studies. We describe an annotated updated micro-method for preparing synaptoneurosomes (SNs) enriched in presynaptic and postsynaptic elements. An easy to follow, step-by-step, protocol is provided for making SNs from small amounts of mammalian brain tissue. This includes novel applications for material obtained from human neurosurgical procedures and primary rat neuronal cultures. Our updated method for preparing SNs using smaller amounts of tissue provides a valuable new tool and expands the capabilities of neuroscientists.


Asunto(s)
Separación Celular/métodos , Sinaptosomas , Adolescente , Animales , Encéfalo/ultraestructura , Niño , Preescolar , Humanos , Lactante , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Neuronas/ultraestructura , Ratas , Ratas Sprague-Dawley
7.
PLoS One ; 5(3): e9532, 2010 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-20224768

RESUMEN

BACKGROUND: Astrocytes exert a wide variety of functions in health and disease and respond to a wide range of signaling pathways, including members of the Janus-kinase signal transducers and activators of transcription (Jak-STAT) family. We have recently shown that STAT3 is an important regulator of astrocyte reactivity after spinal cord injury in vivo[1]. METHODOLOGY/PRINCIPAL FINDINGS: Here, we used both a conditional gene deletion strategy that targets the deletion of STAT3 selectively to astrocytes (STAT3-CKO), and a pharmacological inhibitor of JAK-2, AG490, in cultured astrocytes in vitro, to investigate potential functions and molecules influenced by STAT3 signaling in relation to mitochondrial function and oxidative stress. Our findings show that the absence of STAT3 signaling in astrocytes leads to (i) increased production of superoxide anion and other reactive oxygen species and decreased level of glutathione, (ii) decreased mitochondrial membrane potential and decreased ATP production, and (iii) decreased rate of cell proliferation. Many of the differences observed in STAT3-CKO astrocytes were distinctly altered by exposure to rotenone, suggesting a role for complex I of the mitochondrial electron transport chain. Gene expression microarray studies identified numerous changes in STAT3-CKO cells that may have contributed to the identified deficits in cell function. CONCLUSIONS/SIGNIFICANCE: Taken together, these STAT3-dependent alterations in cell function and gene expression have relevance to both reactive gliosis and to the support and protection of surrounding cells in neural tissue.


Asunto(s)
Astrocitos/citología , Mitocondrias/metabolismo , Estrés Oxidativo , Factor de Transcripción STAT3/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Antioxidantes/metabolismo , Astrocitos/metabolismo , Proliferación Celular , Eliminación de Gen , Genotipo , Glutatión/metabolismo , Inmunohistoquímica/métodos , Potenciales de la Membrana , Ratones , Transducción de Señal
8.
Am J Physiol Lung Cell Mol Physiol ; 290(6): L1202-9, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16414979

RESUMEN

Habitual marijuana smoking is associated with inflammation and atypia of airway epithelium accompanied by symptoms of chronic bronchitis. We hypothesized that Delta(9)-tetrahydrocannabinol (THC), the primary psychoactive component of marijuana, might contribute to these findings by impairing cellular energetics and mitochondrial function. To test this hypothesis, we examined particulate smoke extracts from marijuana cigarettes, tobacco cigarettes, and placebo marijuana (0% THC) cigarettes for their effects on the mitochondrial function of A549 cells in vitro. Only extracts prepared from marijuana cigarettes altered mitochondrial staining by the potentiometric probe JC-1. With the use of a cross-flow, nose-only inhalation system, rats were then exposed for 20 min to whole marijuana smoke and examined for its effects on airway epithelial cells. Inhalation of marijuana smoke produced lung tissue concentrations of THC that were 8-10 times higher than those measured in blood (75 +/- 38 ng/g wet wt tissue vs. 9.2 +/- 2.0 ng/ml), suggesting high local exposure. Intratracheal infusion of JC-1 immediately following marijuana smoke exposure revealed a diffuse decrease in lung cell JC-1 red fluorescence compared with tissue from unexposed or placebo smoke-exposed rats. Exposure to marijuana smoke in vivo also decreased JC-1 red fluorescence (54% decrease, P < 0.01) and ATP levels (75% decrease, P < 0.01) in single-cell preparations of tracheal epithelial cells. These results suggest that inhalation of marijuana smoke has deleterious effects on airway epithelial cell energetics that may contribute to the adverse pulmonary consequences of marijuana smoking.


Asunto(s)
Fumar Marihuana/efectos adversos , Mitocondrias/fisiología , Mucosa Respiratoria/fisiopatología , Animales , Línea Celular , Dronabinol/farmacología , Metabolismo Energético , Humanos , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/fisiología , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Mitocondrias/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/fisiología , Fumar
9.
Am J Physiol Lung Cell Mol Physiol ; 284(2): L298-306, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12533310

RESUMEN

We have observed rapid and extensive depletion of cellular energy stores by Delta(9)-tetrahydrocannabinol (THC) in the pulmonary transformed cell line A549. ATP levels declined dose dependently with an IC(50) of 7.5 microg/ml of THC after 24-h exposure. Cell death was observed only at concentrations >10 microg/ml. Studies using JC-1, a fluorescent probe for mitochondrial membrane potential, revealed diminished mitochondrial function at THC concentrations as low as 0.5 microg/ml. At concentrations of 2.5 or 10 microg/ml of THC, a decrease in mitochondrial membrane potential was observed as early as 1 h after THC exposure. Mitochondrial function remained diminished for at least 30 h after THC exposure. Flow cytometry studies on cells exposed to particulate smoke extracts indicate that JC-1 red fluorescence was fivefold lower in cells exposed to marijuana smoke extract relative to cells exposed to tobacco smoke extract. Comparison with a variety of mitochondrial inhibitors demonstrates that THC produced effects similar to that of carbonyl cyanide p-trifluoromethoxyphenylhydrazone, suggesting uncoupling of electron transport. Loss of red JC-1 fluorescence by THC was suppressed by cyclosporin A, suggesting mediation by the mitochondrial permeability transition pore. This disruption of mitochondrial function was sustained for at least 24 h after removal of THC by extensive washing. These results suggest that exposure of the bronchopulmonary epithelium to THC may have important health and physiological consequences.


Asunto(s)
Fenómenos Fisiológicos Celulares/efectos de los fármacos , Dronabinol/farmacología , Metabolismo Energético/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/fisiología , Psicotrópicos/farmacología , Bencimidazoles , Cannabis , Carbocianinas , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/farmacología , Relación Dosis-Respuesta a Droga , Dronabinol/administración & dosificación , Colorantes Fluorescentes , Humanos , Potenciales de la Membrana/efectos de los fármacos , Concentración Osmolar , Psicotrópicos/administración & dosificación , Humo/efectos adversos , Nicotiana , Células Tumorales Cultivadas , Desacopladores/farmacología
10.
Neurochem Res ; 27(11): 1535-42, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12512958

RESUMEN

Tumor necrosis factor (TNF)-family cytokines induce reactive oxygen species (ROS) that injure vulnerable populations of brain cells. Among glia, oligodendrocytes are particularly susceptible to TNF-induced ROS whereas microglia are protected. We previously found that oligodendrocytes in vitro predominantly express the p55 type-1 TNF receptor, while microglial cells express both type-1 and p75 type-2 receptors. We hypothesized that differential TNF receptor expression and attendant signaling underlies the relative vulnerability of oligodendrocytes, versus microglia, to TNF-induced injury. To test this hypothesis, purified cultures of glial cells were incubated 0-48 hr with TNFalpha or lymphotoxin-alpha, following which levels of ROS, glutathione (GSH), nuclear factor kappa-B (NFkappaB) translocation, and anti-oxidant proteins and activity were measured. 48 hr exposure to TNF increased ROS levels 28% and decreased GSH levels 17% in oligodendrocytes, but decreased levels ROS levels 24% and increased GSH levels 112% increase in microglia. Thirty to 180 min exposure to TNF increased NFkappaB nuclear translocation to a greater extent and for a longer time in microglia versus oligodendrocytes, and this was followed 24-48 hr later with 3- to 13-fold increases in microglia manganese superoxide dismutase protein levels and 6-fold increases in enzyme activity. Collectively, these data suggest that signals transduced through the p75 receptor activate anti-oxidant mechanisms that protect microglia from TNF-induced injury. Lacking such signals, oligodendrocytes are considerably more vulnerable to the injurious effects of TNF.


Asunto(s)
FN-kappa B/metabolismo , Neuroglía/metabolismo , Receptores del Factor de Necrosis Tumoral/metabolismo , Factor de Necrosis Tumoral alfa/fisiología , Animales , Northern Blotting , Inmunohistoquímica , Neuroglía/citología , Neuroglía/enzimología , Transporte de Proteínas , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA