Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Am Soc Nephrol ; 33(10): 1864-1875, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35820785

RESUMEN

BACKGROUND: Mutations in SLC37A4, which encodes the intracellular glucose transporter G6PT, cause the rare glycogen storage disease type 1b (GSD1b). A long-term consequence of GSD1b is kidney failure, which requires KRT. The main protein markers of proximal tubule function, including NaPi2A, NHE3, SGLT2, GLUT2, and AQP1, are downregulated as part of the disease phenotype. METHODS: We utilized an inducible mouse model of GSD1b, TM-G6PT-/-, to show that glycogen accumulation plays a crucial role in altering proximal tubule morphology and function. To limit glucose entry into proximal tubule cells and thus to prevent glycogen accumulation, we administered an SGLT2-inhibitor, dapagliflozin, to TM-G6PT-/- mice. RESULTS: In proximal tubule cells, G6PT suppression stimulates the upregulation and activity of hexokinase-I, which increases availability of the reabsorbed glucose for intracellular metabolism. Dapagliflozin prevented glycogen accumulation and improved kidney morphology by promoting a metabolic switch from glycogen synthesis toward lysis and by restoring expression levels of the main proximal tubule functional markers. CONCLUSION: We provide proof of concept for the efficacy of dapagliflozin in preserving kidney function in GSD1b mice. Our findings could represent the basis for repurposing this drug to treat patients with GSD1b.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo I , Túbulos Renales Proximales , Ratones , Animales , Transportador 2 de Sodio-Glucosa/metabolismo , Túbulos Renales Proximales/metabolismo , Riñón/metabolismo , Modelos Animales de Enfermedad , Glucosa/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo I/complicaciones , Enfermedad del Almacenamiento de Glucógeno Tipo I/metabolismo , Glucógeno/metabolismo
2.
Pflugers Arch ; 474(7): 733-741, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35397662

RESUMEN

Renal micropuncture, which requires the direct access to the renal tubules, has for long time been the technique of choice to measure the single nephron glomerular filtration rate (SNGFR) in animal models. This approach is challenging by virtue of complex animal preparation and numerous technically difficult steps. The introduction of intravital multiphoton microscopy (MPM) offers another approach to the measure of the SNGFR by mean of the high laser-tissue penetration and the optical sectioning capacity. Previous MPM studies measuring SNGFR in vivo relied on fast full-frame acquisition during the filtration process obtainable with high performance resonant scanners. In this study, we describe an innovative linescan-based MPM method. The new method can discriminate SNGFR variations both in conditions of low and high glomerular filtration, and shows results comparable to conventional micropuncture both for rats and mice. Moreover, this novel approach has improved spatial and time resolution and is faster than previous methods, thus enabling the investigation of SNGFR from more tubules and improving options for data-analysis.


Asunto(s)
Microscopía , Nefronas , Animales , Tasa de Filtración Glomerular , Riñón , Túbulos Renales , Ratones , Punciones , Ratas
3.
Mol Imaging ; 2022: 7908357, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35418808

RESUMEN

Accumulation of uremic toxins may lead to the life-threatening condition "uremic syndrome" in patients with advanced chronic kidney disease (CKD) requiring renal replacement therapy. Clinical evaluation of proximal tubular secretion of organic cations (OC), of which some are uremic toxins, is desired, but difficult. The biomedical knowledge on OC secretion and cellular transport partly relies on studies using the fluorescent tracer 4-dimethylaminostyryl)-N-methylpyridinium (ASP+), which has been used in many studies of renal excretion mechanisms of organic ions and which could be a candidate as a PET tracer. This study is aimed at expanding the knowledge of the tracer characteristics of ASP+ by recording the distribution and intensity of ASP+ signals in vivo both by fluorescence and by positron emission tomography (PET) imaging and at investigating if the fluorescence signal of ASP+ is influenced by the presence of albumin. Two-photon in vivo microscopy of male Münich Wistar Frömter rats showed that a bolus injection of ASP+ conferred a fluorescence signal to the blood plasma lasting for about 30 minutes. In the renal proximal tubule, the bolus resulted in a complex pattern of fluorescence including a rapid and strong transient signal at the brush border, a very low signal in the luminal fluid, and a slow transient intracellular signal. PET imaging using 11C-labelled ASP+ showed accumulation in the liver, heart, and kidney. Fluorescence emission spectra recorded in vitro of ASP+ alone and in the presence of albumin using both 1-photon excitation and two-photon excitation showed that albumin strongly enhance the emission from ASP+ and induce a shift of the emission maximum from 600 to 570 nm. Conclusion. The renal pattern of fluorescence observed from ASP+ in vivo is likely affected by the local concentration of albumin, and quantification of ASP+ fluorescent signals in vivo cannot be directly translated to ASP+ concentrations.


Asunto(s)
Albúminas , Riñón , Albúminas/metabolismo , Animales , Cationes/metabolismo , Fluorescencia , Humanos , Riñón/diagnóstico por imagen , Riñón/metabolismo , Masculino , Compuestos de Piridinio , Ratas , Ratas Wistar
4.
Front Physiol ; 14: 1176409, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37168225

RESUMEN

Serial intravital 2-photon microscopy of the kidney and other abdominal organs is a powerful technique to assess tissue function and structure simultaneously and over time. Thus, serial intravital microscopy can capture dynamic tissue changes during health and disease and holds great potential to characterize (patho-) physiological processes with subcellular resolution. However, successful image acquisition and analysis require significant expertise and impose multiple potential challenges. Abdominal organs are rhythmically displaced by breathing movements which hamper high-resolution imaging. Traditionally, kidney intravital imaging is performed on inverted microscopes where breathing movements are partly compensated by the weight of the animal pressing down. Here, we present a custom and easy-to-implement setup for intravital imaging of the kidney and other abdominal organs on upright microscopes. Furthermore, we provide image processing protocols and a new plugin for the free image analysis software FIJI to process multichannel fluorescence microscopy data. The proposed image processing pipelines cover multiple image denoising algorithms, sample drift correction using 2D registration, and alignment of serial imaging data collected over several weeks using landmark-based 3D registration. The provided tools aim to lower the barrier of entry to intravital microscopy of the kidney and are readily applicable by biomedical practitioners.

5.
Nat Commun ; 14(1): 4407, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37479698

RESUMEN

Acute kidney injury (AKI) is an important risk factor for chronic kidney disease (CKD), but the underlying mechanisms of failed tubule repair and AKI-CKD transition are incompletely understood. In this study, we aimed for dynamic tracking of tubule injury and remodeling to understand if focal injury upon AKI may spread over time. Here, we present a model of AKI, in which we rendered only half of the kidney ischemic. Using serial intravital 2-photon microscopy and genetic identification of cycling cells, we tracked dynamic tissue remodeling in post- and non-ischemic kidney regions simultaneously and over 3 weeks. Spatial and temporal analysis of cycling cells relative to initial necrotic cell death demonstrated pronounced injury propagation and expansion into non-necrotic tissue regions, which predicted tubule atrophy with epithelial VCAM1 expression. In summary, our longitudinal analyses of tubule injury, remodeling, and fate provide important insights into AKI pathology.


Asunto(s)
Lesión Renal Aguda , Insuficiencia Renal Crónica , Humanos , Nefronas , Riñón , Atrofia , Necrosis
6.
Sci Transl Med ; 15(720): eabn4214, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37910600

RESUMEN

Glycogen storage disease XI, also known as Fanconi-Bickel syndrome (FBS), is a rare autosomal recessive disorder caused by mutations in the SLC2A2 gene that encodes the glucose-facilitated transporter type 2 (GLUT2). Patients develop a life-threatening renal proximal tubule dysfunction for which no treatment is available apart from electrolyte replacement. To investigate the renal pathogenesis of FBS, SLC2A2 expression was ablated in mouse kidney and HK-2 proximal tubule cells. GLUT2Pax8Cre+ mice developed time-dependent glycogen accumulation in proximal tubule cells and recapitulated the renal Fanconi phenotype seen in patients. In vitro suppression of GLUT2 impaired lysosomal autophagy as shown by transcriptomic and biochemical analysis. However, this effect was reversed by exposure to a low glucose concentration, suggesting that GLUT2 facilitates the homeostasis of key cellular pathways in proximal tubule cells by preventing glucose toxicity. To investigate whether targeting proximal tubule glucose influx can limit glycogen accumulation and correct symptoms in vivo, we treated mice with the selective SGLT2 inhibitor dapagliflozin. Dapagliflozin reduced glycogen accumulation and improved metabolic acidosis and phosphaturia in the animals by normalizing the expression of Napi2a and NHE3 transporters. In addition, in a patient with FBS, dapagliflozin was safe, improved serum potassium and phosphate concentrations, and reduced glycogen content in urinary shed cells. Overall, this study provides proof of concept for dapagliflozin as a potentially suitable therapy for FBS.


Asunto(s)
Síndrome de Fanconi , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Ratones , Animales , Síndrome de Fanconi/genética , Síndrome de Fanconi/metabolismo , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Glucosa , Riñón/metabolismo , Glucógeno
7.
PLoS One ; 17(9): e0273660, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36149863

RESUMEN

Clathrin-mediated endocytosis (CME) is one of the best studied cellular uptake pathways and its contributions to nutrient uptake, receptor signaling, and maintenance of the lipid membrane homeostasis have been already elucidated. Today, we still have a lack of understanding how the different components of this pathway cooperate dynamically in vivo. Therefore, we generated a reporter mouse model for CME by fusing eGFP endogenously in frame to clathrin light chain a (Clta) to track endocytosis in living mice. The fusion protein is expressed in all tissues, but in a cell specific manner, and can be visualized using fluorescence microscopy. Recruitment to nanobeads recorded by TIRF microscopy validated the functionality of the Clta-eGFP reporter. With this reporter model we were able to track the dynamics of Alexa594-BSA uptake in kidneys of anesthetized mice using intravital 2-photon microscopy. This reporter mouse model is not only a suitable and powerful tool to track CME in vivo in genetic or disease mouse models it can also help to shed light into the differential roles of the two clathrin light chain isoforms in health and disease.


Asunto(s)
Cadenas Ligeras de Clatrina , Clatrina , Animales , Clatrina/metabolismo , Cadenas Ligeras de Clatrina/genética , Endocitosis , Lípidos , Ratones , Microscopía Fluorescente/métodos
8.
Nephron ; 144(12): 650-654, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32604088

RESUMEN

Acute kidney injury (AKI) is associated with an increased risk of CKD. Injury-induced multifaceted renal cell-to-cell crosstalk can either lead to successful self-repair or chronic fibrosis and inflammation. In this mini-review, we will discuss critical renal cell types acting as victims or executioners in AKI pathology and introduce intravital imaging as a powerful technique to further dissect these cell-to-cell interactions.


Asunto(s)
Lesión Renal Aguda/patología , Lesión Renal Aguda/diagnóstico por imagen , Humanos , Riñón/patología , Macrófagos/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA