Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Plant Cell Environ ; 45(4): 1011-1028, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35060135

RESUMEN

Some recent studies have reviewed the occurrence and phytotoxicity of micro/nanoplastics, but their distribution in the soil environment, mechanisms of uptake by roots and the mode of action are unclear. Thus, this review comprehensively represents the relative abundance of micro/nanoplastics in different soil types and their toxicities in plants with insights into their partitioning to different soil matrices, uptake mechanisms, and the mode of action. Partitioning of micro/nanoplastics to different soil matrices (like-soil particles, naturally occurring soil organic matters, pore waters and soil fauna) could modify their bioavailability to plants. The small micro/nanoplastic particles can be taken up by roots through the apoplastic and symplastic pathways. In this regard, cellular endocytosis and aquaporin might play a significant role. The shape of the polymers can also regulate their uptake, and the polymers with spherical shapes are more easily absorbed by roots than the polymers with other shapes. Bioaccumulation of micro/nanoplastic induces oxidative stress, which, in turn, causes alterations of gene expressions and different metabolic pathways responsible for plant growth, biomass production and synthesis of secondary metabolites.


Asunto(s)
Contaminantes del Suelo , Suelo , Microplásticos , Raíces de Plantas/metabolismo , Plantas/metabolismo , Contaminantes del Suelo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA