Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small Struct ; 5(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-39220563

RESUMEN

Quantitative and volumetric assessment of filamentous actin fibers (F-actin) remains challenging due to their interconnected nature, leading researchers to utilize threshold based or qualitative measurement methods with poor reproducibility. Here we introduce a novel machine learning based methodology for accurate quantification and reconstruction of nuclei-associated F-actin. Utilizing a Convolutional Neural Network (CNN), we segment actin filaments and nuclei from 3D confocal microscopy images and then reconstruct each fiber by connecting intersecting contours on cross-sectional slices. This allowed measurement of the total number of actin filaments and individual actin filament length and volume in a reproducible fashion. Focusing on the role of F-actin in supporting nucleocytoskeletal connectivity, we quantified apical F-actin, basal F-actin, and nuclear architecture in mesenchymal stem cells (MSCs) following the disruption of the Linker of Nucleoskeleton and Cytoskeleton (LINC) Complexes. Disabling LINC in mesenchymal stem cells (MSCs) generated F-actin disorganization at the nuclear envelope characterized by shorter length and volume of actin fibers contributing a less elongated nuclear shape. Our findings not only present a new tool for mechanobiology but introduce a novel pipeline for developing realistic computational models based on quantitative measures of F-actin.

2.
bioRxiv ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38045225

RESUMEN

The advent of extended-duration human spaceflight demands a better comprehension of the physiological impacts of microgravity. One primary concern is the adverse impact on the musculoskeletal system, including muscle atrophy and bone density reduction. Ground-based microgravity simulations have provided insights, with vibrational bioreactors emerging as potential mitigators of these negative effects. Despite the potential they have, the adaptation of vibrational bioreactors for space remains unfulfilled, resulting in a significant gap in microgravity research. This paper introduces the first automated low-intensity vibrational (LIV) bioreactor designed specifically for the International Space Station (ISS) environment. Our research covers the bioreactor's design and characterization, the selection of an optimal linear guide for consistent 1-axis acceleration, a thorough analysis of its thermal and diffusion dynamics, and the pioneering use of BioMed Clear resin for enhanced scaffold design. This advancement sets the stage for more authentic space-based biological studies, vital for ensuring the safety of future space explorations.

3.
bioRxiv ; 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37066142

RESUMEN

Quantitative and volumetric assessment of filamentous actin fibers (F-actin) remains challenging due to their interconnected nature, leading researchers to utilize threshold based or qualitative measurement methods with poor reproducibility. Here we introduce a novel machine learning based methodology for accurate quantification and reconstruction of nuclei-associated F-actin. Utilizing a Convolutional Neural Network (CNN), we segment actin filaments and nuclei from 3D confocal microscopy images and then reconstruct each fiber by connecting intersecting contours on cross-sectional slices. This allowed measurement of the total number of actin filaments and individual actin filament length and volume in a reproducible fashion. Focusing on the role of F-actin in supporting nucleocytoskeletal connectivity, we quantified apical F-actin, basal F-actin, and nuclear architecture in mesenchymal stem cells (MSCs) following the disruption of the Linker of Nucleoskeleton and Cytoskeleton (LINC) Complexes. Disabling LINC in mesenchymal stem cells (MSCs) generated F-actin disorganization at the nuclear envelope characterized by shorter length and volume of actin fibers contributing a less elongated nuclear shape. Our findings not only present a new tool for mechanobiology but introduce a novel pipeline for developing realistic computational models based on quantitative measures of F-actin.

4.
IEEE Trans Cybern ; 43(4): 1237-50, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26502433

RESUMEN

This paper presents a novel navigation and control system for autonomous mobile robots that includes path planning, localization, and control. A unique vision-based pose and velocity estimation scheme utilizing both the continuous and discrete forms of the Euclidean homography matrix is fused with inertial and optical encoder measurements to estimate the pose, orientation, and velocity of the robot and ensure accurate localization and control signals. A depth estimation system is integrated in order to overcome the loss of scale inherent in vision-based estimation. A path following control system is introduced that is capable of guiding the robot along a designated curve. Stability analysis is provided for the control system and experimental results are presented that prove the combined localization and control system performs with high accuracy.

5.
IEEE Int Conf Rehabil Robot ; 2011: 5975433, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22275634

RESUMEN

This paper presents design, implementation and control of a 3RPS-R exoskeleton, specifically built to impose targeted therapeutic exercises to forearm and wrist. Design of the exoskeleton features enhanced ergonomy, enlarged workspace and optimized device performance when compared to previous versions of the device. Passive velocity field control (PVFC) is implemented at the task space of the manipulator to provide assistance to the patients, such that the exoskeleton follows a desired velocity field asymptotically while maintaining passivity with respect to external applied torque inputs. PVFC is augmented with virtual tunnels and resulting control architecture is integrated into a virtual flight simulator with force-feedback. Experimental results are presented indicating the applicability and effectiveness of using PVFC on 3RPS-R exoskeleton to deliver therapeutic movement exercises.


Asunto(s)
Antebrazo/fisiología , Robótica/instrumentación , Muñeca/fisiología , Algoritmos , Fenómenos Biomecánicos , Diseño de Equipo , Humanos , Movimiento , Robótica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA