Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Ther ; 32(7): 2150-2175, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38796706

RESUMEN

Neuroglobin, a member of the globin superfamily, is abundant in the brain, retina, and cerebellum of mammals and localizes to mitochondria. The protein exhibits neuroprotective capacities by participating in electron transfer, oxygen supply, and protecting against oxidative stress. Our objective was to determine whether neuroglobin overexpression can be used to treat neurological disorders. We chose Harlequin mice, which harbor a retroviral insertion in the first intron of the apoptosis-inducing factor gene resulting in the depletion of the corresponding protein essential for mitochondrial biogenesis. Consequently, Harlequin mice display degeneration of the cerebellum and suffer from progressive blindness and ataxia. Cerebellar ataxia begins in Harlequin mice at the age of 4 months and is characterized by neuronal cell disappearance, bioenergetics failure, and motor and cognitive impairments, which aggravated with aging. Mice aged 2 months received adeno-associated viral vectors harboring the coding sequence of neuroglobin or apoptosis-inducing factor in both cerebellar hemispheres. Six months later, Harlequin mice exhibited substantial improvements in motor and cognitive skills; probably linked to the preservation of respiratory chain function, Purkinje cell numbers and connectivity. Thus, without sharing functional properties with apoptosis-inducing factor, neuroglobin was efficient in reducing ataxia in Harlequin mice.


Asunto(s)
Ataxia Cerebelosa , Cerebelo , Globinas , Mitocondrias , Proteínas del Tejido Nervioso , Neuroglobina , Animales , Ratones , Factor Inductor de la Apoptosis/metabolismo , Factor Inductor de la Apoptosis/genética , Ataxia Cerebelosa/metabolismo , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/terapia , Cerebelo/metabolismo , Dependovirus/genética , Modelos Animales de Enfermedad , Expresión Génica , Terapia Genética/métodos , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación , Globinas/metabolismo , Globinas/genética , Homeostasis , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Neuroglobina/metabolismo , Neuronas/metabolismo
2.
Infect Immun ; 92(4): e0006224, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38514466

RESUMEN

Streptococcus agalactiae also named Group B Streptococcus (GBS) is the most significant pathogen causing invasive infections, such as bacteremia and meningitis, in neonates. Worldwide epidemiological studies have shown that a particular clonal complex (CC) of capsular serotype III, the CC17, is strongly associated with meningitis in neonates and is therefore, designated as the hypervirulent clone. Macrophages are a permissive niche for intracellular bacteria of all GBS clones. In this study, we deciphered the specific interaction of GBS CC17 strains with macrophages. Our study revealed that CC17 strains are phagocytosed at a higher rate than GBS non-CC17 strains by human monocytes and macrophages both in cellular models and in primary cells. CC17-enhanced phagocytosis is due to an initial enhanced-attachment step to macrophages mediated by the CC17-specific surface protein HvgA and the PI-2b pilus (Spb1). We showed that two different inhibitors of scavenger receptors (fucoidan and poly(I)) specifically inhibited CC17 adhesion and phagocytosis while not affecting those of non-CC17 strains. Once phagocytosed, both CC17 and non-CC17 strains remained in a LAMP-1 positive vacuole that ultimately fuses with lysosomes where they can survive at similar rates. Finally, both strains displayed a basal egress which occurs independently from actin and microtubule networks. Our findings provide new insights into the interplay between the hypervirulent GBS CC17 and major players of the host's innate immune response. This enhanced adhesion, leading to increased phagocytosis, could reflect a peculiar capacity of the CC17 lineage to subvert the host immune defenses, establish a niche for persistence or disseminate.


Asunto(s)
Meningitis , Infecciones Estreptocócicas , Recién Nacido , Humanos , Streptococcus agalactiae , Infecciones Estreptocócicas/microbiología , Macrófagos , Células Clonales
3.
Glia ; 72(4): 777-793, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38189217

RESUMEN

Astrocytes are highly ramified and send out perivascular processes (PvAPs) that entirely sheathe the brain's blood vessels. PvAPs are equipped with an enriched molecular repertoire that sustains astrocytic regulatory functions at the vascular interface. In the mouse, PvAP development starts after birth and is essentially complete by postnatal day (P) 15. Progressive molecular maturation also occurs over this period, with the acquisition of proteins enriched in PvAPs. The mechanisms controlling the development and molecular maturation of PvAPs have not been extensively characterized. We reported previously that mRNAs are distributed unequally in mature PvAPs and are locally translated. Since dynamic mRNA localization and local translation influence the cell's polarity, we hypothesized that they might sustain the postnatal maturation of PvAPs. Here, we used a combination of molecular biology and imaging approaches to demonstrate that the development of PvAPs is accompanied by the transport of mRNA and polysomal mRNA into PvAPs, the development of a rough endoplasmic reticulum (RER) network and Golgi cisternae, and local translation. By focusing on genes and proteins that are selectively or specifically expressed in astrocytes, we characterized the developmental profile of mRNAs, polysomal mRNAs and proteins in PvAPs from P5 to P60. We found that some polysomal mRNAs polarized progressively towards the PvAPs. Lastly, we found that expression and localization of mRNAs in developing PvAPs is perturbed in a mouse model of megalencephalic leukoencephalopathy with subcortical cysts. Our results indicate that dynamic mRNA localization and local translation influence the postnatal maturation of PvAPs.


Asunto(s)
Astrocitos , Ratones , Animales , ARN Mensajero/metabolismo , Astrocitos/metabolismo
4.
Chembiochem ; 24(4): e202200647, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36479913

RESUMEN

An increasing number of novel Ru(II) polypyridyl complexes have been successfully applied as photosensitizers (PSs) for photodynamic therapy (PDT). Despite recent advances in optimized PSs with refined photophysical properties, the lack of tumoral selectivity is often a major hurdle for their clinical development. Here, classical maleimide and versatile NHS-activated acrylamide strategies were employed to site-selectively conjugate a promising Ru(II) polypyridyl complex to the N-terminally Cys-modified Bombesin (BBN) targeting unit. Surprisingly, the decreased cell uptake of these novel Ru-BBN conjugates in cancer cells did not hamper the high phototoxic activity of the Ru-containing bioconjugates and even decreased the toxicity of the constructs in the absence of light irradiation. Overall, although deceiving in terms of selectivity, our new bioconjugates could still be useful for advanced cancer treatment due to their nontoxicity in the dark.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Neoplasias , Fotoquimioterapia , Rutenio , Complejos de Coordinación/farmacología , Complejos de Coordinación/efectos de la radiación , Rutenio/farmacología , Bombesina , Fármacos Fotosensibilizantes/farmacología , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico
5.
Chemistry ; 29(61): e202301742, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37548580

RESUMEN

Light-activated treatments, such as photodynamic therapy (PDT), provide temporal and spatial control over a specific cytotoxic response by exploiting toxicity differences between irradiated and dark conditions. In this work, a novel strategy for developing near infrared (NIR)-activatable Ru(II) polypyridyl-based photosensitizers (PSs) was successfully developed through the incorporation of symmetric heptamethine cyanine dyes in the metal complex via a phenanthrimidazole ligand. Owing to their strong absorption in the NIR region, the PSs could be efficiently photoactivated with highly penetrating NIR light (770 nm), leading to high photocytotoxicities towards several cancer cell lines under both normoxic and hypoxic conditions. Notably, our lead PS (Ru-Cyn-1), which accumulated in the mitochondria, exhibited a good photocytotoxic activity under challenging low-oxygen concentration (2 % O2 ) upon NIR light irradiation conditions (770 nm), owing to a combination of type I and II PDT mechanisms. The fact that the PS Protoporphyrin IX (PpIX), the metabolite of the clinically approved 5-ALA PS, was found inactive under the same challenging conditions positions Ru-Cyn-1 complex as a promising PDT agent for the treatment of deep-seated hypoxic tumours.


Asunto(s)
Complejos de Coordinación , Neoplasias , Fotoquimioterapia , Rutenio , Humanos , Fármacos Fotosensibilizantes/farmacología , Complejos de Coordinación/farmacología , Colorantes , Neoplasias/tratamiento farmacológico , Rutenio/farmacología
6.
Inorg Chem ; 62(31): 12237-12251, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37489813

RESUMEN

Eight rhenium(I) tricarbonyl aqua complexes with the general formula fac-[Re(CO)3(N,N'-bid)(H2O)][NO3] (1-8), where N,N'-bid is (2,6-dimethoxypyridyl)imidazo[4,5-f]1,10-phenanthroline (L1), (indole)imidazo[4,5-f]1,10-phenanthroline (L2), (5-methoxyindole)-imidazo[4,5-f]1,10-phenanthroline (L3), (biphenyl)imidazo[4,5-f]1,10-phenanthroline (L4), (fluorene)imidazo[4,5-f]1,10-phenanthroline (L5), (benzo[b]thiophene)imidazo[4,5-f]1,10-phenanthroline (L6), (5-bromothiazole)imidazo[4,5-f]1,10-phenanthroline (L7), and (4,5-dimethylthiophene)imidazo[4,5-f]1,10-phenanthroline (L8), were synthesized and characterized using 1H and 13C{1H} NMR, FT-IR, UV/Vis absorption spectroscopy, and ESI-mass spectrometry, and their purity was confirmed by elemental analysis. The stability of the complexes in aqueous buffer solution (pH 7.4) was confirmed by UV/Vis spectroscopy. The cytotoxicity of the complexes (1-8) was then evaluated on prostate cancer cells (PC3), showing a low nanomolar to low micromolar in vitro cytotoxicity. Worthy of note, three of the Re(I) tricarbonyl complexes showed very low (IC50 = 30-50 nM) cytotoxic activity against PC3 cells and up to 26-fold selectivity over normal human retinal pigment epithelial-1 (RPE-1) cells. The cytotoxicity of both complexes 3 and 6 was lowered under hypoxic conditions in PC3 cells. However, the compounds were still 10 times more active than cisplatin in these conditions. Additional biological experiments were then performed on the most selective complexes (complexes 3 and 6). Cell fractioning experiments followed by ICP-MS studies revealed that 3 and 6 accumulate mostly in the mitochondria and nucleus, respectively. Despite the respective mitochondrial and nuclear localization of 3 and 6, 3 did not trigger the apoptosis pathways for cell killing, whereas 6 can trigger apoptosis but not as a major pathway. Complex 3 induced a paraptosis pathway for cell killing while 6 did not induce any of our other tested pathways, namely, necrosis, paraptosis, and autophagy. Both complexes 3 and 6 were found to be involved in mitochondrial dysfunction and downregulated the ATP production of PC3 cells. To the best of our knowledge, this report presents some of the most cytotoxic Re(I) carbonyl complexes with exceptionally low nanomolar cytotoxic activity toward prostate cancer cells, demonstrating further the future viability of utilizing rhenium in the fight against cancer.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Neoplasias de la Próstata , Renio , Humanos , Masculino , Complejos de Coordinación/química , Renio/farmacología , Renio/química , Espectroscopía Infrarroja por Transformada de Fourier , Antineoplásicos/farmacología , Antineoplásicos/química
7.
Inorg Chem ; 62(45): 18510-18523, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37913550

RESUMEN

Lack of selectivity is one of the main issues with currently used chemotherapies, causing damage not only to altered cells but also to healthy cells. Over the last decades, photodynamic therapy (PDT) has increased as a promising therapeutic tool due to its potential to treat diseases like cancer or bacterial infections with a high spatiotemporal control. Ruthenium(II) polypyridyl compounds are gaining attention for their application as photosensitizers (PSs) since they are generally nontoxic in dark conditions, while they show remarkable toxicity after light irradiation. In this work, four Ru(II) polypyridyl compounds with sterically expansive ligands were studied as PDT agents. The Ru(II) complexes were synthesized using an alternative route to those described in the literature, which resulted in an improvement of the synthesis yields. Solid-state structures of compounds [Ru(DIP)2phen]Cl2 and [Ru(dppz)2phen](PF6)2 have also been obtained. It is well-known that compound [Ru(dppz)(phen)2]Cl2 binds to DNA by intercalation. Therefore, we used [Ru(dppz)2phen]Cl2 as a model for DNA interaction studies, showing that it stabilized two different sequences of duplex DNA. Most of the synthesized Ru(II) derivatives showed very promising singlet oxygen quantum yields, together with noteworthy photocytotoxic properties against two different cancer cell lines, with IC50 in the micro- or even nanomolar range (0.06-7 µM). Confocal microscopy studies showed that [Ru(DIP)2phen]Cl2 and [Ru(DIP)2TAP]Cl2 accumulate preferentially in mitochondria, while no mitochondrial internalization was observed for the other compounds. Although [Ru(dppn)2phen](PF6)2 did not accumulate in mitochondria, it interestingly triggered an impairment in mitochondrial respiration after light irradiation. Among others, [Ru(dppn)2phen](PF6)2 stands out for its very good IC50 values, correlated with a very high singlet oxygen quantum yield and mitochondrial respiration disruption.


Asunto(s)
Complejos de Coordinación , Fotoquimioterapia , Rutenio , Complejos de Coordinación/química , Rutenio/farmacología , Rutenio/química , Oxígeno Singlete/metabolismo , ADN , Ligandos
8.
J Infect Dis ; 226(7): 1276-1285, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35524969

RESUMEN

BACKGROUND: Staphylococcus aureus dominates the lung microbiota of children with cystic fibrosis (CF) and persistent clones are able to establish chronic infection for years, having a direct deleterious impact on lung function. However, in this context, the exact contribution of S. aureus to the decline in respiratory function in children with CF is not elucidated. METHODS: To investigate the contribution of persistent S. aureus clones in CF disease, we undertook the analysis of sequential isogenic isolates recovered from 15 young CF patients. RESULTS: Using an air-liquid infection model, we observed a strong correlation between S. aureus adaption in the lung (late isolates), low toxicity, and proinflammatory cytokine secretion. Conversely, early isolates appeared to be highly cytotoxic but did not promote cytokine secretion. We found that cytokine secretion was dependent on staphylococcal protein A (Spa), which was selectively expressed in late compared to early isolates as a consequence of dysfunctional agr quorum-sensing system. Finally, we demonstrated the involvement of TNF-α receptor 1 signaling in the inflammatory response of airway epithelial cells to these lung-adapted S. aureus isolates. CONCLUSIONS: Our results suggest an unexpected direct role of bacterial lung adaptation in the progression of chronic lung disease by promoting a proinflammatory response through acquired agr dysfunction.


Asunto(s)
Fibrosis Quística , Infecciones Estafilocócicas , Niño , Fibrosis Quística/complicaciones , Fibrosis Quística/microbiología , Humanos , Pulmón/metabolismo , Infecciones Estafilocócicas/microbiología , Proteína Estafilocócica A , Staphylococcus aureus/fisiología , Factor de Necrosis Tumoral alfa
9.
Angew Chem Int Ed Engl ; 62(20): e202218347, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36917074

RESUMEN

Five osmium(II) polypyridyl complexes of the general formula [Os(4,7-diphenyl-1,10-phenanthroline)2 L]2+ were synthesized as photosensitizers for photodynamic therapy by varying the nature of the ligand L. Thanks to the pronounced π-extended structure of the ligands and the heavy atom effect provided by the osmium center, these complexes exhibit a high absorption in the near-infrared (NIR) region (up to 740 nm), unlike related ruthenium complexes. This led to a promising phototoxicity in vitro against cancer cells cultured as 2D cell layers but also in multicellular tumor spheroids upon irradiation at 740 nm. The complex [Os(4,7-diphenyl-1,10-phenanthroline)2 (2,2'-bipyridine)]2+ was found to be the most efficient against various cancer cell lines, with high phototoxicity indexes. Experiments on CT26 tumor-bearing BALB/c mice also indicate that the OsII complexes could significantly reduce tumor growth following 740 nm laser irradiation. The high phototoxicity in the biological window of this structurally simple complex makes it a promising photosensitizer for cancer treatment.


Asunto(s)
Complejos de Coordinación , Neoplasias , Fotoquimioterapia , Rutenio , Animales , Ratones , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/química , Osmio/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/uso terapéutico , Complejos de Coordinación/química , Neoplasias/tratamiento farmacológico , Rutenio/farmacología , Rutenio/química
10.
Inorg Chem ; 61(34): 13576-13585, 2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-35960605

RESUMEN

Four new ruthenium(II) polypyridyl complexes were synthesized to study the effect of poly(ethylene glycol) and/or biotin conjugation on their physical and biological properties, including their hydrophilicity, their cellular uptake, and their phototoxicity. Unexpectedly, these complexes self-assembled into nanoparticles upon dilution in biological media. This behavior leads to their accumulation in lysosomes following their internalization by cells. While a significant increase in cellular uptake was observed for the biotin-conjugated complexes, it did not result in an increase in their phototoxicity. However, their high phototoxicity upon irradiation at long wavelengths (645-670 nm) and their self-assembling behavior make them a promising backbone for the development of new lysosome-targeted photosensitizers for photodynamic therapy.


Asunto(s)
Complejos de Coordinación , Nanopartículas , Fotoquimioterapia , Rutenio , Biotina , Fármacos Fotosensibilizantes
11.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34445542

RESUMEN

Endoglin (Eng) is an endothelial cell (EC) transmembrane glycoprotein involved in adhesion and angiogenesis. Eng mutations result in vessel abnormalities as observed in hereditary hemorrhagic telangiectasia of type 1. The role of Eng was investigated in endothelial functions and permeability under inflammatory conditions, focusing on the actin dynamic signaling pathway. Endothelial Colony-Forming Cells (ECFC) from human cord blood and mouse lung/aortic EC (MLEC, MAEC) from Eng+/+ and Eng+/- mice were used. ECFC silenced for Eng with Eng-siRNA and ctr-siRNA were used to test tubulogenesis and permeability +/- TNFα and +/- LIM kinase inhibitors (LIMKi). In silico modeling of TNFα-Eng interactions was carried out from PDB IDs 5HZW and 5HZV. Calcium ions (Ca2+) flux was studied by Oregon Green 488 in epifluorescence microscopy. Levels of cofilin phosphorylation and tubulin post-translational modifications were evaluated by Western blot. F-actin and actin-tubulin distribution/co-localization were evaluated in cells by confocal microscopy. Eng silencing in ECFCs resulted in a decrease of cell sprouting by 50 ± 15% (p < 0.05) and an increase in pseudo-tube width (41 ± 4.5%; p < 0.001) compared to control. Upon TNFα stimulation, ECFC Eng-siRNA displayed a significant higher permeability compared to ctr-siRNA (p < 0.01), which is associated to a higher Ca2+ mobilization (p < 0.01). Computational analysis suggested that Eng mitigated TNFα activity. F-actin polymerization was significantly increased in ECFC Eng-siRNA, MAEC+/-, and MLEC+/- compared to controls (p < 0.001, p < 0.01, and p < 0.01, respectively) as well as actin/tubulin distribution (p < 0.01). Furthermore, the inactive form of cofilin (P-cofilin at Ser3) was significantly decreased by 36.7 ± 4.8% in ECFC Eng-siRNA compared to ctr-siRNA (p < 0.001). Interestingly, LIMKi reproduced the absence of Eng on TNFα-induced ECFC-increased permeability. Our data suggest that Eng plays a critical role in the homeostasis regulation of endothelial cells under inflammatory conditions (TNFα), and loss of Eng influences ECFC-related permeability through the LIMK/cofilin/actin rearrangement-signaling pathway.


Asunto(s)
Factores Despolimerizantes de la Actina/metabolismo , Permeabilidad de la Membrana Celular , Endoglina/metabolismo , Células Endoteliales/patología , Inflamación/patología , Quinasas Lim/metabolismo , Neovascularización Patológica/patología , Factores Despolimerizantes de la Actina/genética , Animales , Endoglina/genética , Células Endoteliales/metabolismo , Inflamación/genética , Inflamación/metabolismo , Quinasas Lim/genética , Ratones , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo
12.
Bioinformatics ; 35(2): 258-265, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30010788

RESUMEN

Motivation: RNA quantification experiments result in compositional data, however usual methods for compositional data analysis [additive log ratio (alr), centered log ratio (clr), isometric log ratio (ilr)] do not apply easily and give results difficult to interpret. To handle this, a method based on disjoint subgraphs in a graph whose nodes are the quantified RNAs is proposed. Edges in the graph are defined by lack of change in ratios of the corresponding RNAs between conditions. Results: The methods is suited for qRT-PCR and RNA-Seq data analyses, and leads to easy-to-interpret, graphical results and the identification of set of genes that share a similar behavior when the studied condition changes. For qRT-PCR data, it has better statistical properties than the common ΔΔCq method. Availability and implementation: Construction of all pairwise ratio analysis P-values matrix, and conversion into a graph was implemented in an R package, named SARP.compo. It is freely available for download on the CRAN repository. Example R script using the package are provided as Supplementary Material; the R package includes the data needed. One of these scripts reproduces the Figure 2 of this paper. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Expresión Génica , ARN , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Biología Computacional
14.
Mol Pharm ; 16(3): 1312-1326, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30721081

RESUMEN

The effect of cannabidiol (CBD), a high-affinity agonist of the transient receptor potential vanilloid-2 (TRPV2) channel, has been poorly investigated in human brain microvessel endothelial cells (BMEC) forming the blood-brain barrier (BBB). TRPV2 expression and its role on Ca2+ cellular dynamics, trans-endothelial electrical resistance (TEER), cell viability and growth, migration, and tubulogenesis were evaluated in human primary cultures of BMEC (hPBMEC) or in the human cerebral microvessel endothelial hCMEC/D3 cell line. Abundant TRPV2 expression was measured in hCMEC/D3 and hPBMEC by qRT-PCR, Western blotting, nontargeted proteomics, and cellular immunofluorescence studies. Intracellular Ca2+ levels were increased by heat and CBD and blocked by the nonspecific TRP antagonist ruthenium red (RR) and the selective TRPV2 inhibitor tranilast (TNL) or by silencing cells with TRPV2 siRNA. CBD dose-dependently induced the hCMEC/D3 cell number (EC50 0.3 ± 0.1 µM), and this effect was fully abolished by TNL or TRPV2 siRNA. A wound healing assay showed that CBD induced cell migration, which was also inhibited by TNL or TRPV2 siRNA. Tubulogenesis of hCMEC/D3 cells in 3D matrigel cultures was significantly increased by 41 and 73% after a 7 or 24 h CBD treatment, respectively, and abolished by TNL. CBD also increased the TEER of hPBMEC monolayers cultured in transwell, and this was blocked by TNL. Our results show that CBD, at extracellular concentrations close to those observed in plasma of patients treated by CBD, induces proliferation, migration, tubulogenesis, and TEER increase in human brain endothelial cells, suggesting CBD might be a potent target for modulating the human BBB.


Asunto(s)
Neoplasias Encefálicas/irrigación sanguínea , Cannabidiol/farmacología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Endoteliales/metabolismo , Microvasos/patología , Canales Catiónicos TRPV/metabolismo , Barrera Hematoencefálica/metabolismo , Calcio/metabolismo , Cannabis/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Impedancia Eléctrica , Calor , Humanos , Extractos Vegetales/farmacología , Rojo de Rutenio/farmacología , Canales Catiónicos TRPV/antagonistas & inhibidores , ortoaminobenzoatos/farmacología
15.
J Neurosci ; 35(10): 4427-39, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25762685

RESUMEN

In the normal brain, immune cell trafficking and immune responses are strictly controlled and limited. This unique homeostatic equilibrium, also called brain immune quiescence, is crucial to maintaining proper brain functions and is altered in various pathological processes, from chronic immunopathological disorders to cognitive and psychiatric impairments. To date, the precise nature of factors regulating the brain/immune system interrelationship is poorly understood. In the present study, we demonstrate that one of these regulating factors is Connexin 43 (Cx43), a gap junction protein highly expressed by astrocytes at the blood-brain barrier (BBB) interface. We show that, by setting the activated state of cerebral endothelium, astroglial Cx43 controls immune recruitment as well as antigen presentation mechanisms in the mouse brain. Consequently, in the absence of astroglial Cx43, recruited immune cells elaborate a specific humoral autoimmune response against the von Willebrand factor A domain-containing protein 5a, an extracellular matrix protein of the brain. Altogether, our results demonstrate that Cx43 is a new astroglial factor promoting the immune quiescence of the brain.


Asunto(s)
Astrocitos/metabolismo , Encéfalo/citología , Encéfalo/inmunología , Conexina 43/metabolismo , Citocinas/metabolismo , Inmunidad Humoral/fisiología , Leucocitos/fisiología , Factores de Edad , Albúminas/metabolismo , Animales , Astrocitos/ultraestructura , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/ultraestructura , Complejo CD3/metabolismo , Proteínas de Unión al Calcio/metabolismo , Isótopos de Carbono/farmacocinética , Movimiento Celular/genética , Células Cultivadas , Conexina 43/genética , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Femenino , Proteína Ácida Fibrilar de la Glía , Inmunidad Humoral/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas S100/genética , Proteínas S100/metabolismo , Sacarosa/farmacocinética
16.
J Neurochem ; 132(4): 373-83, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25327972

RESUMEN

The expression of aryl hydrocarbon receptor (AhR) transcription factor was detected at transcript level in freshly isolated human brain microvessels and in the hCMEC/D3 human cerebral microvascular endothelial cell line. Recent studies have demonstrated that AhR pathway is able to crosstalk with other pathways such as hypoxia signaling pathway. Therefore, we used the hCMEC/D3 cell line to investigate the potential crosstalk between AhR and hypoxia signaling pathways. First, we performed two different hypoxia-like procedures in hCMEC/D3 cells; namely, exposition of cells to 150 µM deferoxamine or to glucose and oxygen deprivation for 6 h. These two procedures led to hypoxia-inducible factor (HIF)-1α and HIF-2α proteins accumulation together with a significant induction of the two well-known hypoxia-inducible genes VEGF and GLUT-1. Both HIF-1α and -2α functionally mediated hypoxia response in the hCMEC/D3 cells. Then, we observed that a 6 h exposure to 25 nM 2,3,7,8-tetrachlorodibenzo-p-dioxin, a strong AhR ligand, up-regulated CYP1A1 and CYP1B1 expression, and that this effect was AhR dependent. Regarding AhR and hypoxia crosstalk, our experiments revealed that an asymmetric interference between these two pathways effectively occurred in hCMEC/D3 cells: hypoxia pathway interfered with AhR signaling but not the other way around. We studied the putative crosstalk of AhR and hypoxia pathways in hCMEC/D3 human cerebral microvascular endothelial cells. While hypoxia decreased the expression of the two AhR target genes CYP1A1 and CYP1B1, AhR activation results in no change in hypoxia target gene expression. This is the first sign of AhR and hypoxia pathway crosstalk in an in vitro model of the human cerebral endothelium.


Asunto(s)
Circulación Cerebrovascular/fisiología , Células Endoteliales/metabolismo , Microvasos/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Hipoxia de la Célula/fisiología , Células Cultivadas , Humanos , Microvasos/citología , Datos de Secuencia Molecular
17.
Mol Ther ; 22(6): 1096-1109, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24622090

RESUMEN

Neuroglobin (NGB) is considered as an endogenous neuroprotective molecule against stroke, since the protein alleviates the adverse effects of hypoxic and ischemic insults. We previously demonstrated the functional link between NGB and mitochondria since it is required for respiratory chain function. Thus, here, we evaluated the relevance of this effect in the Harlequin (Hq) mouse strain, which exhibits retinal ganglion cell (RGC) loss and optic atrophy due to a respiratory chain complex I (CI) defect. A twofold decrease of NGB amounts was observed in Hq retinas. We constructed a recombinant adeno-associated virus which combines to the mouse NGB open reading frame, its 5' and 3'UTR, for guarantying mRNA stability and translation capacity. The vector was administrated intravitreally to Hq mice and NGB expression was stable for up to 7 months without negative effect on retinal architecture or function. On the contrary, RGCs and their axons were substantially preserved from degeneration; consequently, CI activity in optic nerves was protected conferring improvements in vision. Hence, we established that NGB prevents respiratory chain impairment, therefore, protecting visual function otherwise compromised by mitochondrial energetic failure.


Asunto(s)
Complejo I de Transporte de Electrón/deficiencia , Globinas/genética , Proteínas del Tejido Nervioso/genética , Atrofia Óptica/prevención & control , Atrofia Óptica/terapia , Células Ganglionares de la Retina/metabolismo , Animales , Axones/metabolismo , Axones/patología , Dependovirus/genética , Modelos Animales de Enfermedad , Terapia Genética , Vectores Genéticos/administración & dosificación , Gliosis/patología , Gliosis/prevención & control , Globinas/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo , Neuroglobina , Atrofia Óptica/genética , Atrofia Óptica/patología , Células Ganglionares de la Retina/patología
18.
Anaerobe ; 35(Pt B): 105-14, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26363197

RESUMEN

Clostridium butyricum is a Gram-positive bacterium involved in the development of necrotizing enterocolitis (NEC) in preterm infants. To colonize the digestive tract, components of the cell wall of C. butyricum must interact with the intestinal mucosa. The D-alanylation of cell wall components such as teichoic acids results in a net positive charge on the cell wall, which is important for many functions of Gram-positive bacteria. Notably, D-alanylation mediates resistance to antimicrobial peptides and antibiotics. Here, we show that the dlt operon of C. butyricum encodes the enzymes responsible for the D-alanylation of cell wall components and influences the surface properties of the cell wall. We show that the D-alanylation of cell wall components controls the septation of C. butyricum, which is an essential mechanism during vegetative growth. Furthermore, we find that D-alanylation is involved in the resistance of C. butyricum to some cationic antimicrobial peptides (CAMPs) and lysozyme. Finally, we show that the D-alanylation of cell wall components influences vancomycin-induced lysis.


Asunto(s)
Alanina/metabolismo , Antibacterianos/farmacología , Bacteriólisis/efectos de los fármacos , Clostridium butyricum/genética , Operón , Ácidos Teicoicos/metabolismo , Vancomicina/farmacología , División Celular , Pared Celular/metabolismo , Clostridium butyricum/crecimiento & desarrollo , Microscopía , Propiedades de Superficie
19.
Leukemia ; 38(2): 302-317, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38057495

RESUMEN

Chronic lymphocytic leukemia (CLL) is still an incurable disease, with many patients developing resistance to conventional and targeted therapies. To better understand the physiology of CLL and facilitate the development of innovative treatment options, we examined specific metabolic features in the tumor CLL B-lymphocytes. We observed metabolic reprogramming, characterized by a high level of mitochondrial oxidative phosphorylation activity, a low glycolytic rate, and the presence of C2- to C6-carnitine end-products revealing an unexpected, essential role for peroxisomal fatty acid beta-oxidation (pFAO). Accordingly, downmodulation of ACOX1 (a rate-limiting pFAO enzyme overexpressed in CLL cells) was enough to shift the CLL cells' metabolism from lipids to a carbon- and amino-acid-based phenotype. Complete blockade of ACOX1 resulted in lipid droplet accumulation and caspase-dependent death in CLL cells, including those from individuals with poor cytogenetic and clinical prognostic factors. In a therapeutic translational approach, ACOX1 inhibition spared non-tumor blood cells from CLL patients but led to the death of circulating, BCR-stimulated CLL B-lymphocytes and CLL B-cells receiving pro-survival stromal signals. Furthermore, a combination of ACOX1 and BTK inhibitors had a synergistic killing effect. Overall, our results highlight a less-studied but essential metabolic pathway in CLL and pave the way towards the development of new, metabolism-based treatment options.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Linfocitos B/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos/uso terapéutico , Leucemia Linfocítica Crónica de Células B/patología , Reprogramación Metabólica , Mitocondrias/metabolismo
20.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167272, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38897257

RESUMEN

The functional integrity of the central nervous system relies on complex mechanisms in which the mitochondria are crucial actors because of their involvement in a multitude of bioenergetics and biosynthetic pathways. Mitochondrial diseases are among the most prevalent groups of inherited neurological disorders, affecting up to 1 in 5000 adults and despite considerable efforts around the world there is still limited curative treatments. Harlequin mice correspond to a relevant model of recessive X-linked mitochondrial disease due to a proviral insertion in the first intron of the Apoptosis-inducing factor gene, resulting in an almost complete depletion of the corresponding protein. These mice exhibit progressive degeneration of the retina, optic nerve, cerebellum, and cortical regions leading to irremediable blindness and ataxia, reminiscent of what is observed in patients suffering from mitochondrial diseases. We evaluated the progression of cerebellar degeneration in Harlequin mice, especially for Purkinje cells and its relationship with bioenergetics failure and behavioral damage. For the first time to our knowledge, we demonstrated that Harlequin mice display cognitive and emotional impairments at early stage of the disease with further deteriorations as ataxia aggravates. These functions, corresponding to higher-order cognitive processing, have been assigned to a complex network of reciprocal connections between the cerebellum and many cortical areas which could be dysfunctional in these mice. Consequently, Harlequin mice become a suitable experimental model to test innovative therapeutics, via the targeting of mitochondria which can become available to a large spectrum of neurological diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA