RESUMEN
Despite the overwhelming evidence that multiple sclerosis is an autoimmune disease, relatively little is known about the precise nature of the immune dysregulation underlying the development of the disease. Reasoning that the CSF from patients might be enriched for cells relevant in pathogenesis, we have completed a high-resolution single-cell analysis of 96 732 CSF cells collected from 33 patients with multiple sclerosis (n = 48 675) and 48 patients with other neurological diseases (n = 48 057). Completing comprehensive cell type annotation, we identified a rare population of CD8+ T cells, characterized by the upregulation of inhibitory receptors, increased in patients with multiple sclerosis. Applying a Multi-Omics Factor Analysis to these single-cell data further revealed that activity in pathways responsible for controlling inflammatory and type 1 interferon responses are altered in multiple sclerosis in both T cells and myeloid cells. We also undertook a systematic search for expression quantitative trait loci in the CSF cells. Of particular interest were two expression quantitative trait loci in CD8+ T cells that were fine mapped to multiple sclerosis susceptibility variants in the viral control genes ZC3HAV1 (rs10271373) and IFITM2 (rs1059091). Further analysis suggests that these associations likely reflect genetic effects on RNA splicing and cell-type specific gene expression respectively. Collectively, our study suggests that alterations in viral control mechanisms might be important in the development of multiple sclerosis.
Asunto(s)
Esclerosis Múltiple , Humanos , Linfocitos T CD8-positivos , Regulación hacia Arriba , Antivirales , Líquido Cefalorraquídeo/metabolismo , Proteínas de la Membrana/genéticaRESUMEN
Post-mortem studies have shown that patients dying from severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection frequently have pathological changes in their CNS, particularly in the brainstem. Many of these changes are proposed to result from para-infectious and/or post-infection immune responses. Clinical symptoms such as fatigue, breathlessness, and chest pain are frequently reported in post-hospitalized coronavirus disease 2019 (COVID-19) patients. We propose that these symptoms are in part due to damage to key neuromodulatory brainstem nuclei. While brainstem involvement has been demonstrated in the acute phase of the illness, the evidence of long-term brainstem change on MRI is inconclusive. We therefore used ultra-high field (7 T) quantitative susceptibility mapping (QSM) to test the hypothesis that brainstem abnormalities persist in post-COVID patients and that these are associated with persistence of key symptoms. We used 7 T QSM data from 30 patients, scanned 93-548 days after hospital admission for COVID-19 and compared them to 51 age-matched controls without prior history of COVID-19 infection. We correlated the patients' QSM signals with disease severity (duration of hospital admission and COVID-19 severity scale), inflammatory response during the acute illness (C-reactive protein, D-dimer and platelet levels), functional recovery (modified Rankin scale), depression (Patient Health Questionnaire-9) and anxiety (Generalized Anxiety Disorder-7). In COVID-19 survivors, the MR susceptibility increased in the medulla, pons and midbrain regions of the brainstem. Specifically, there was increased susceptibility in the inferior medullary reticular formation and the raphe pallidus and obscurus. In these regions, patients with higher tissue susceptibility had worse acute disease severity, higher acute inflammatory markers, and significantly worse functional recovery. This study contributes to understanding the long-term effects of COVID-19 and recovery. Using non-invasive ultra-high field 7 T MRI, we show evidence of brainstem pathophysiological changes associated with inflammatory processes in post-hospitalized COVID-19 survivors.
RESUMEN
BACKGROUND: Chondroitin sulfate proteoglycans (CSPGs) are potent inhibitors of axonal regrowth and remyelination. More recently, they have also been highlighted as a modulator of macrophage infiltration into the central nervous system in experimental autoimmune encephalomyelitis, an inflammatory model of multiple sclerosis. METHODS: We interrogated results from single nucleotide polymorphisms (SNPs) lying in or close to genes regulating CSPG metabolism in the summary results from two publicly available systematic studies of multiple sclerosis (MS) genetics. A demyelinating injury model in the spinal cord of exostosin-like 2 deficient (EXTL2-/-) mice was used to investigate the effects of dysregulation of EXTL2 on remyelination. Cell cultures of bone marrow-derived macrophages and primary oligodendrocyte precursor cells and neurons were supplemented with purified CSPGs or conditioned media to assess potential mechanisms of action. RESULTS: The strongest evidence for genetic association was seen for SNPs mapping to the region containing the glycosyltransferase exostosin-like 2 (EXTL2), an enzyme that normally suppresses CSPG biosynthesis. Six of these SNPs showed genome-wide significant evidence for association in one of the studies with concordant and nominally significant effects in the second study. We then went on to show that a demyelinating injury to the spinal cord of EXTL2-/- mice resulted in excessive deposition of CSPGs in the lesion area. EXTL2-/- mice had exacerbated axonal damage and myelin disruption relative to wild-type mice, and increased representation of microglia/macrophages within lesions. In tissue culture, activated bone marrow-derived macrophages from EXTL2-/- mice overproduce tumor necrosis factor α (TNFα) and matrix metalloproteinases (MMPs). CONCLUSIONS: These results emphasize CSPGs as a prominent modulator of neuroinflammation and they highlight CSPGs accumulating in lesions in promoting axonal injury.
Asunto(s)
Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Enfermedades Desmielinizantes/patología , Proteínas de la Membrana/metabolismo , Esclerosis Múltiple/patología , N-Acetilglucosaminiltransferasas/metabolismo , Animales , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/metabolismo , Femenino , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Macrófagos/metabolismo , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Esclerosis Múltiple/genética , Esclerosis Múltiple/metabolismo , N-Acetilglucosaminiltransferasas/genética , Polimorfismo de Nucleótido SimpleRESUMEN
Background and Purpose- The role of inflammation in ischemic white matter disease is increasingly recognized, and further understanding of the pathophysiology might inform future treatment strategies. Multiple sclerosis (MS) is a chronic autoimmune condition in which inflammation plays a central role that also affects the white matter. We hypothesized that white matter injury might share common mechanisms and used statistical genetics techniques to assess whether having genetically elevated white matter hyperintensity (WMH) volume was associated with increased MS risk. Methods- We investigated the genetic association in 2 cohorts with magnetic resonance imaging-quantified ischemic white matter lesion volume (WMH in stroke; n=2797 and UK Biobank; n=8353) and 14 802 cases of MS and 26 703 controls from the International Multiple Sclerosis Genetics Consortium. We further performed individual-level polygenic risk score calculations for MS and measures of structural white matter disease in UK Biobank. Finally, we looked for evidence of overlapping risk across the whole genome. Results- There was no association of genetic variants influencing MS with WMH volume using summary statistics in the WMH in stroke cohort (relative risk score =1.014; 95% CI, 0.936-1.110) or in the UK Biobank cohort (relative risk score =1.030; 95% CI, 0.932-1.117). Conversely, assessing the contribution of single nucleotide polymorphisms significantly associated with WMH on the risk of MS there was no significant association (relative risk score =0.930; 95% CI, 0.736-1.191). There were no significant associations between polygenic risk scores calculations; these results were robust to the selection of single nucleotide polymorphisms at a range of significance thresholds. Whole genome analysis did not reveal any overlap of risk between the traits. Conclusions- Our results do not provide evidence to suggest a shared mechanism of white matter damage in ischemia and MS. We propose that inflammation acts in distinct pathways because of the differing nature of the primary insult.
Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales/genética , Enfermedades de los Pequeños Vasos Cerebrales/patología , Esclerosis Múltiple/genética , Esclerosis Múltiple/patología , Sustancia Blanca/patología , Anciano , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido SimpleRESUMEN
Bacteremia (bacterial bloodstream infection) is a major cause of illness and death in sub-Saharan Africa but little is known about the role of human genetics in susceptibility. We conducted a genome-wide association study of bacteremia susceptibility in more than 5,000 Kenyan children as part of the Wellcome Trust Case Control Consortium 2 (WTCCC2). Both the blood-culture-proven bacteremia case subjects and healthy infants as controls were recruited from Kilifi, on the east coast of Kenya. Streptococcus pneumoniae is the most common cause of bacteremia in Kilifi and was thus the focus of this study. We identified an association between polymorphisms in a long intergenic non-coding RNA (lincRNA) gene (AC011288.2) and pneumococcal bacteremia and replicated the results in the same population (p combined = 1.69 × 10(-9); OR = 2.47, 95% CI = 1.84-3.31). The susceptibility allele is African specific, derived rather than ancestral, and occurs at low frequency (2.7% in control subjects and 6.4% in case subjects). Our further studies showed AC011288.2 expression only in neutrophils, a cell type that is known to play a major role in pneumococcal clearance. Identification of this novel association will further focus research on the role of lincRNAs in human infectious disease.
Asunto(s)
Bacteriemia/genética , Neumonía Neumocócica/genética , Polimorfismo Genético/genética , ARN Largo no Codificante/genética , Streptococcus pneumoniae/genética , Adolescente , Bacteriemia/microbiología , Bacteriemia/patología , Estudios de Casos y Controles , Niño , Preescolar , Estudio de Asociación del Genoma Completo , Humanos , Lactante , Recién Nacido , Kenia/epidemiología , Neumonía Neumocócica/microbiología , Neumonía Neumocócica/patología , Factores de RiesgoRESUMEN
The increasing evidence supporting a role for B cells in the pathogenesis of multiple sclerosis prompted us to investigate the influence of known susceptibility variants on the surface expression of co-stimulatory molecules in these cells. Using flow cytometry we measured surface expression of CD40 and CD86 in B cells from 68 patients and 162 healthy controls that were genotyped for the multiple sclerosis associated single nucleotide polymorphisms (SNPs) rs4810485, which maps within the CD40 gene, and rs9282641, which maps within the CD86 gene. We found that carrying the risk allele rs4810485*T lowered the cell-surface expression of CD40 in all tested B cell subtypes (in total B cells P ≤ 5.10 × 10-5 in patients and ≤4.09 × 10-6 in controls), while carrying the risk allele rs9282641*G increased the expression of CD86, with this effect primarily seen in the naïve B cell subset (P = 0.048 in patients and 5.38 × 10-5 in controls). In concordance with these results, analysis of RNA expression demonstrated that the risk allele rs4810485*T resulted in lower total CD40 expression (P = 0.057) but with an increased proportion of alternative splice-forms leading to decoy receptors (P = 4.00 × 10-7). Finally, we also observed that the risk allele rs4810485*T was associated with decreased levels of interleukin-10 (P = 0.020), which is considered to have an immunoregulatory function downstream of CD40. Given the importance of these co-stimulatory molecules in determining the immune reaction that appears in response to antigen our data suggest that B cells might have an important antigen presentation and immunoregulatory role in the pathogenesis of multiple sclerosis.
Asunto(s)
Linfocitos B/metabolismo , Antígeno B7-2/genética , Antígenos CD40/genética , Predisposición Genética a la Enfermedad/genética , Esclerosis Múltiple/genética , Polimorfismo de Nucleótido Simple/genética , Linfocitos B/patología , Correlación de Datos , Citocinas/sangre , Femenino , Regulación de la Expresión Génica/genética , Genotipo , Humanos , Interleucina-10/metabolismo , Masculino , Esclerosis Múltiple/sangre , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patologíaRESUMEN
Large population studies of immune system genes are essential for characterizing their role in diseases, including autoimmune conditions. Of key interest are a group of genes encoding the killer cell immunoglobulin-like receptors (KIRs), which have known and hypothesized roles in autoimmune diseases, resistance to viruses, reproductive conditions, and cancer. These genes are highly polymorphic, which makes typing expensive and time consuming. Consequently, despite their importance, KIRs have been little studied in large cohorts. Statistical imputation methods developed for other complex loci (e.g., human leukocyte antigen [HLA]) on the basis of SNP data provide an inexpensive high-throughput alternative to direct laboratory typing of these loci and have enabled important findings and insights for many diseases. We present KIR∗IMP, a method for imputation of KIR copy number. We show that KIR∗IMP is highly accurate and thus allows the study of KIRs in large cohorts and enables detailed investigation of the role of KIRs in human disease.
Asunto(s)
Asma/genética , Variaciones en el Número de Copia de ADN/genética , Dermatitis Atópica/genética , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple/genética , Receptores KIR/clasificación , Receptores KIR/genética , Estudios de Casos y Controles , Estudios de Cohortes , Europa (Continente) , Familia , Femenino , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Análisis de Secuencia de ADNRESUMEN
Identification of candidate causal variants in regions associated with risk of common diseases is complicated by linkage disequilibrium (LD) and multiple association signals. Nonetheless, accurate maps of these variants are needed, both to fully exploit detailed cell specific chromatin annotation data to highlight disease causal mechanisms and cells, and for design of the functional studies that will ultimately be required to confirm causal mechanisms. We adapted a Bayesian evolutionary stochastic search algorithm to the fine mapping problem, and demonstrated its improved performance over conventional stepwise and regularised regression through simulation studies. We then applied it to fine map the established multiple sclerosis (MS) and type 1 diabetes (T1D) associations in the IL-2RA (CD25) gene region. For T1D, both stepwise and stochastic search approaches identified four T1D association signals, with the major effect tagged by the single nucleotide polymorphism, rs12722496. In contrast, for MS, the stochastic search found two distinct competing models: a single candidate causal variant, tagged by rs2104286 and reported previously using stepwise analysis; and a more complex model with two association signals, one of which was tagged by the major T1D associated rs12722496 and the other by rs56382813. There is low to moderate LD between rs2104286 and both rs12722496 and rs56382813 (r2 ≃ 0:3) and our two SNP model could not be recovered through a forward stepwise search after conditioning on rs2104286. Both signals in the two variant model for MS affect CD25 expression on distinct subpopulations of CD4+ T cells, which are key cells in the autoimmune process. The results support a shared causal variant for T1D and MS. Our study illustrates the benefit of using a purposely designed model search strategy for fine mapping and the advantage of combining disease and protein expression data.
Asunto(s)
Teorema de Bayes , Mapeo Cromosómico/métodos , Diabetes Mellitus Tipo 1/genética , Predisposición Genética a la Enfermedad , Esclerosis Múltiple/genética , Algoritmos , Mapeo Cromosómico/estadística & datos numéricos , Haplotipos , Humanos , Subunidad alfa del Receptor de Interleucina-2/genética , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Procesos EstocásticosRESUMEN
BACKGROUND: Mendelian randomization (MR) studies have demonstrated strong support for an association between genetically increased body mass index and risk of multiple sclerosis (MS). The adipokine adiponectin may be a potential mechanism linking body mass to risk of MS. OBJECTIVE: To evaluate whether genetically increased adiponectin levels influence risk of MS. METHODS: Using genome-wide significant single nucleotide polymorphisms (SNPs) for adiponectin, we undertook an MR study to estimate the effect of adiponectin on MS. This method prevents bias due to reverse causation and minimizes bias due to confounding. Sensitivity analyses were performed to evaluate the assumptions of MR. RESULTS: MR analyses did not support a role for genetically elevated adiponectin in risk of MS (odds ratio (OR) = 0.93 per unit increase in natural-log-transformed adiponectin, equivalent to a two-standard deviation increase in adiponectin on the absolute scale; 95% confidence interval (CI) = 0.66-1.33; p = 0.61). Further MR analysis suggested that genetic variation at the adiponectin gene, which influences adiponectin level, does not impact MS risk. Sensitivity analyses, including MR-Egger regression, suggested no bias due to pleiotropy. CONCLUSION: Lifelong genetically increased adiponectin levels in humans have no clear effect on risk of MS. Other biological factors driving the association between body mass and MS should be investigated.
Asunto(s)
Adiponectina/genética , Análisis de la Aleatorización Mendeliana/métodos , Esclerosis Múltiple/genética , Humanos , Polimorfismo de Nucleótido Simple , RiesgoRESUMEN
BACKGROUND: The Multiple Sclerosis Severity Score (MSSS) is obtained by normalising the Expanded Disability Status Scale (EDSS) score for disease duration and has been a valuable tool in cross-sectional studies. OBJECTIVE: To assess whether use of age rather than the inherently ambiguous disease duration was a feasible approach. METHOD: We pooled disability data from three population-based cohorts and developed an Age Related Multiple Sclerosis Severity (ARMSS) score by ranking EDSS scores based on the patient's age at the time of assessment. We established the power to detect a difference between groups afforded by the ARMSS score and assessed its relative consistency over time. RESULTS: The study population included 26058 patients from Sweden ( n = 11846), Canada ( n = 6179) and the United Kingdom ( n = 8033). There was a moderate correlation between EDSS and disease duration ( r = 0.46, 95% confidence interval (CI): 0.45-0.47) and between EDSS and age ( r = 0.44, 95% CI: 0.43-0.45). The ARMSS scores showed comparable power to detect disability differences between groups to the updated and original MSSS. CONCLUSION: Since age is typically unbiased and readily obtained, and the ARMSS and MSSS were comparable, the ARMSS may provide a more versatile tool and could minimise study biases and loss of statistical power caused by inaccurate or missing onset dates.
Asunto(s)
Factores de Edad , Personas con Discapacidad , Esclerosis Múltiple/diagnóstico , Índice de Severidad de la Enfermedad , Adolescente , Adulto , Anciano , Canadá , Femenino , Humanos , Masculino , Persona de Mediana Edad , Suecia , Factores de Tiempo , Reino Unido , Adulto JovenRESUMEN
Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis.
Asunto(s)
Predisposición Genética a la Enfermedad/genética , Inmunidad Celular/inmunología , Esclerosis Múltiple/genética , Esclerosis Múltiple/inmunología , Alelos , Diferenciación Celular/inmunología , Europa (Continente)/etnología , Genoma Humano/genética , Estudio de Asociación del Genoma Completo , Antígenos HLA-A/genética , Antígenos HLA-DR/genética , Cadenas HLA-DRB1 , Humanos , Inmunidad Celular/genética , Complejo Mayor de Histocompatibilidad/genética , Polimorfismo de Nucleótido Simple/genética , Tamaño de la Muestra , Linfocitos T Colaboradores-Inductores/citología , Linfocitos T Colaboradores-Inductores/inmunologíaRESUMEN
BACKGROUND: Observational studies have reported an association between obesity, as measured by elevated body mass index (BMI), in early adulthood and risk of multiple sclerosis (MS). However, bias potentially introduced by confounding and reverse causation may have influenced these findings. Therefore, we elected to perform Mendelian randomization (MR) analyses to evaluate whether genetically increased BMI is associated with an increased risk of MS. METHODS AND FINDINGS: Employing a two-sample MR approach, we used summary statistics from the Genetic Investigation of Anthropometric Traits (GIANT) consortium and the International MS Genetics Consortium (IMSGC), the largest genome-wide association studies for BMI and MS, respectively (GIANT: n = 322,105; IMSGC: n = 14,498 cases and 24,091 controls). Seventy single nucleotide polymorphisms (SNPs) were genome-wide significant (p < 5 x 10-8) for BMI in GIANT (n = 322,105) and were investigated for their association with MS risk in the IMSGC. The effect of each SNP on MS was weighted by its effect on BMI, and estimates were pooled to provide a summary measure for the effect of increased BMI upon risk of MS. Our results suggest that increased BMI influences MS susceptibility, where a 1 standard deviation increase in genetically determined BMI (kg/m2) increased odds of MS by 41% (odds ratio [OR]: 1.41, 95% CI 1.20-1.66, p = 2.7 x 10-5, I2 = 0%, 95% CI 0-29). Sensitivity analyses, including MR-Egger regression, and the weighted median approach provided no evidence of pleiotropic effects. The main study limitations are that, while these sensitivity analyses reduce the possibility that pleiotropy influenced our results, residual pleiotropy is difficult to exclude entirely. CONCLUSION: Genetically elevated BMI is associated with risk of MS, providing evidence for a causal role for obesity in MS etiology. While obesity has been associated with many late-life outcomes, these findings suggest an important consequence of childhood and/or early adulthood obesity.
Asunto(s)
Análisis de la Aleatorización Mendeliana , Esclerosis Múltiple/etiología , Obesidad/complicaciones , Obesidad/genética , Índice de Masa Corporal , Estudio de Asociación del Genoma Completo , Humanos , Oportunidad Relativa , Polimorfismo de Nucleótido SimpleRESUMEN
Genome-wide association studies have been successful in identifying common variants that influence the susceptibility to complex diseases. From these studies, it has emerged that there is substantial overlap in susceptibility loci between diseases. In line with those findings, we hypothesized that shared genetic pathways may exist between multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). While both diseases may have inflammatory and neurodegenerative features, epidemiological studies have indicated an increased co-occurrence within individuals and families. To this purpose, we combined genome-wide data from 4088 MS patients, 3762 ALS patients and 12 030 healthy control individuals in whom 5 440 446 single-nucleotide polymorphisms (SNPs) were successfully genotyped or imputed. We tested these SNPs for the excess association shared between MS and ALS and also explored whether polygenic models of SNPs below genome-wide significance could explain some of the observed trait variance between diseases. Genome-wide association meta-analysis of SNPs as well as polygenic analyses fails to provide evidence in favor of an overlap in genetic susceptibility between MS and ALS. Hence, our findings do not support a shared genetic background of common risk variants in MS and ALS.
Asunto(s)
Esclerosis Amiotrófica Lateral/epidemiología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Múltiple/epidemiología , Esclerosis Múltiple/genética , Comorbilidad , Predisposición Genética a la Enfermedad , Humanos , Polimorfismo de Nucleótido SimpleRESUMEN
BACKGROUND: In less than a decade, genomewide association studies have identified over 100 single-nucleotide variants that are associated with increased risk of developing multiple sclerosis. However, since these studies have focused almost exclusively on European populations, it is unclear what role these variants might play in determining risk in other ethnic groups. OBJECTIVE: To assess the effects of European multiple sclerosis-associated risk variants in the south Asian population. METHODS: Using a combination of chip-based genotyping and next-generation sequencing, we have assessed 109 European-associated variants in a total of 270 cases and 555 controls from the south Asian population. RESULTS: We found that two-thirds of the tested variants (72/109) showed over representation of the European risk allele in south Asian cases (p < 0.0003). In the rest of the Immunochip array, the most associated variant was rs7318477 which maps close to TNFSF13B, the gene for the B-cell-related protein BAFF. CONCLUSION: Our data indicate substantial overlap in genetic risk architecture between Europeans and south Asians and suggest that the aetiology of the disease may be largely independent of ethnicity.
Asunto(s)
Esclerosis Múltiple/genética , Población Blanca/genética , Adulto , Asia Occidental/epidemiología , Europa (Continente)/epidemiología , Femenino , Técnicas de Genotipaje , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/epidemiología , Análisis de Secuencia de ADNRESUMEN
BACKGROUND: Previous efforts to identify Human Leukocyte Antigen (HLA) gene associations with multiple sclerosis (MS) in the South Asian population have been underpowered. AIM: To identify the primary HLA class II alleles associated with MS in Indians. METHODS: We typed HLA-DRB1, -DQA1 and -DQB1 in 419 patients and 451 unrelated controls by polymerase chain reaction using sequence specific oligonucleotide probes (PCR-SSOP). RESULTS: At the gene level DRB1 showed significant evidence of association (p=0.0000012), DQA1 showed only marginal evidence of association (p=0.04) and there was no evidence for association at DQB1 (p=0.26). At the DRB1 locus association is confirmed with the *15:01 (p=0.00002) and the *03 (p=0.00005) alleles. CONCLUSION: Our study confirms that the risk effects attributable to the HLA- DRB1*15:01and DRB1*03 alleles seen in Europeans are also seen in Indians. The absence of any evidence of association with DQB1 alleles reflects the lower linkage disequilibrium between DQB1 alleles and DRB1 risk alleles present in this population, and illustrates the potential value of fine mapping signals of association in different ethnic groups.
Asunto(s)
Estudios de Asociación Genética , Cadenas alfa de HLA-DQ/genética , Cadenas beta de HLA-DQ/genética , Cadenas HLA-DRB1/genética , Esclerosis Múltiple/genética , Sistema de Registros , Adulto , Femenino , Humanos , India , Desequilibrio de Ligamiento , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADNRESUMEN
The aims of this study were: (i) to determine to what degree multiple sclerosis-associated loci discovered in European populations also influence susceptibility in African Americans; (ii) to assess the extent to which the unique linkage disequilibrium patterns in African Americans can contribute to localizing the functionally relevant regions or genes; and (iii) to search for novel African American multiple sclerosis-associated loci. Using the ImmunoChip custom array we genotyped 803 African American cases with multiple sclerosis and 1516 African American control subjects at 130 135 autosomal single nucleotide polymorphisms. We conducted association analysis with rigorous adjustments for population stratification and admixture. Of the 110 non-major histocompatibility complex multiple sclerosis-associated variants identified in Europeans, 96 passed stringent quality control in our African American data set and of these, >70% (69) showed over-representation of the same allele amongst cases, including 21 with nominally significant evidence for association (one-tailed test P < 0.05). At a further eight loci we found nominally significant association with an alternate correlated risk-tagging single nucleotide polymorphism from the same region. Outside the regions known to be associated in Europeans, we found seven potentially associated novel candidate multiple sclerosis variants (P < 10(-4)), one of which (rs2702180) also showed nominally significant evidence for association (one-tailed test P = 0.034) in an independent second cohort of 620 African American cases and 1565 control subjects. However, none of these novel associations reached genome-wide significance (combined P = 6.3 × 10(-5)). Our data demonstrate substantial overlap between African American and European multiple sclerosis variants, indicating common genetic contributions to multiple sclerosis risk.
Asunto(s)
Negro o Afroamericano/genética , Predisposición Genética a la Enfermedad/genética , Esclerosis Múltiple/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Alelos , Estudios de Casos y Controles , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Desequilibrio de Ligamiento/genética , Polimorfismo de Nucleótido Simple/genéticaRESUMEN
Immunological hallmarks of multiple sclerosis include the production of antibodies in the central nervous system, expressed as presence of oligoclonal bands and/or an increased immunoglobulin G index-the level of immunoglobulin G in the cerebrospinal fluid compared to serum. However, the underlying differences between oligoclonal band-positive and -negative patients with multiple sclerosis and reasons for variability in immunoglobulin G index are not known. To identify genetic factors influencing the variation in the antibody levels in the cerebrospinal fluid in multiple sclerosis, we have performed a genome-wide association screen in patients collected from nine countries for two traits, presence or absence of oligoclonal bands (n = 3026) and immunoglobulin G index levels (n = 938), followed by a replication in 3891 additional patients. We replicate previously suggested association signals for oligoclonal band status in the major histocompatibility complex region for the rs9271640*A-rs6457617*G haplotype, correlated with HLA-DRB1*1501, and rs34083746*G, correlated with HLA-DQA1*0301 (P comparing two haplotypes = 8.88 × 10(-16)). Furthermore, we identify a novel association signal of rs9807334, near the ELAC1/SMAD4 genes, for oligoclonal band status (P = 8.45 × 10(-7)). The previously reported association of the immunoglobulin heavy chain locus with immunoglobulin G index reaches strong evidence for association in this data set (P = 3.79 × 10(-37)). We identify two novel associations in the major histocompatibility complex region with immunoglobulin G index: the rs9271640*A-rs6457617*G haplotype (P = 1.59 × 10(-22)), shared with oligoclonal band status, and an additional independent effect of rs6457617*G (P = 3.68 × 10(-6)). Variants identified in this study account for up to 2-fold differences in the odds of being oligoclonal band positive and 7.75% of the variation in immunoglobulin G index. Both traits are associated with clinical features of disease such as female gender, age at onset and severity. This is the largest study population so far investigated for the genetic influence on antibody levels in the cerebrospinal fluid in multiple sclerosis, including 6950 patients. We confirm that genetic factors underlie these antibody levels and identify both the major histocompatibility complex and immunoglobulin heavy chain region as major determinants.
Asunto(s)
Variación Genética , Inmunoglobulina G/líquido cefalorraquídeo , Complejo Mayor de Histocompatibilidad/genética , Esclerosis Múltiple/líquido cefalorraquídeo , Esclerosis Múltiple/genética , Polimorfismo de Nucleótido Simple/genética , Adolescente , Adulto , Anciano , Niño , Preescolar , Europa (Continente) , Femenino , Estudios de Asociación Genética , Humanos , Inmunoglobulina G/sangre , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/sangre , Bandas Oligoclonales/sangre , Bandas Oligoclonales/líquido cefalorraquídeo , Índice de Severidad de la Enfermedad , Proteína Smad4/genética , Proteínas Supresoras de Tumor/genética , Adulto JovenRESUMEN
The major histocompatibility complex (MHC) region is strongly associated with multiple sclerosis (MS) susceptibility. HLA-DRB1*15:01 has the strongest effect, and several other alleles have been reported at different levels of validation. Using SNP data from genome-wide studies, we imputed and tested classical alleles and amino acid polymorphisms in 8 classical human leukocyte antigen (HLA) genes in 5,091 cases and 9,595 controls. We identified 11 statistically independent effects overall: 6 HLA-DRB1 and one DPB1 alleles in class II, one HLA-A and two B alleles in class I, and one signal in a region spanning from MICB to LST1. This genomic segment does not contain any HLA class I or II genes and provides robust evidence for the involvement of a non-HLA risk allele within the MHC. Interestingly, this region contains the TNF gene, the cognate ligand of the well-validated TNFRSF1A MS susceptibility gene. The classical HLA effects can be explained to some extent by polymorphic amino acid positions in the peptide-binding grooves. This study dissects the independent effects in the MHC, a critical region for MS susceptibility that harbors multiple risk alleles.
Asunto(s)
Estudio de Asociación del Genoma Completo , Cadenas HLA-DRB1/genética , Complejo Mayor de Histocompatibilidad/genética , Esclerosis Múltiple/genética , Alelos , Mapeo Cromosómico , Predisposición Genética a la Enfermedad , Cadenas beta de HLA-DP/genética , Haplotipos , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Desequilibrio de Ligamiento , Proteínas de la Membrana/genética , Esclerosis Múltiple/patología , Polimorfismo de Nucleótido Simple , Receptores Tipo I de Factores de Necrosis Tumoral/genéticaRESUMEN
Multiple sclerosis is a demyelinating neurodegenerative disease with a strong genetic component. Previous genetic risk studies have failed to identify consistently linked regions or genes outside of the major histocompatibility complex on chromosome 6p. We describe allelic association of a polymorphism in the gene encoding the interleukin 7 receptor alpha chain (IL7R) as a significant risk factor for multiple sclerosis in four independent family-based or case-control data sets (overall P = 2.9 x 10(-7)). Further, the likely causal SNP, rs6897932, located within the alternatively spliced exon 6 of IL7R, has a functional effect on gene expression. The SNP influences the amount of soluble and membrane-bound isoforms of the protein by putatively disrupting an exonic splicing silencer.