RESUMEN
To test the hypothesis that an abiotic Earth and its inert atmosphere could form chemically reactive carbon- and nitrogen-containing compounds, we designed a plasma electrochemical setup to mimic lightning-induced electrochemistry under steady-state conditions of the early Earth. Air-gap electrochemical reactions at air-water-ground interfaces lead to remarkable yields, with up to 40 moles of carbon dioxide being reduced into carbon monoxide and formic acid, and 3 moles of gaseous nitrogen being fixed into nitrate, nitrite, and ammonium ions, per mole of transmitted electrons. Interfaces enable reactants (e.g., minerals) that may have been on land, in lakes, and in oceans to participate in radical and redox reactions, leading to higher yields compared to gas-phase-only reactions. Cloud-to-ground lightning strikes could have generated high concentrations of reactive molecules locally, establishing diverse feedstocks for early life to emerge and survive globally.
RESUMEN
We present observations defining (i) the frequency and depth of convective penetration of water into the stratosphere over the United States in summer using the Next-Generation Radar system; (ii) the altitude-dependent distribution of inorganic chlorine established in the same coordinate system as the radar observations; (iii) the high resolution temperature structure in the stratosphere over the United States in summer that resolves spatial and structural variability, including the impact of gravity waves; and (iv) the resulting amplification in the catalytic loss rates of ozone for the dominant halogen, hydrogen, and nitrogen catalytic cycles. The weather radar observations of â¼2,000 storms, on average, each summer that reach the altitude of rapidly increasing available inorganic chlorine, coupled with observed temperatures, portend a risk of initiating rapid heterogeneous catalytic conversion of inorganic chlorine to free radical form on ubiquitous sulfate-water aerosols; this, in turn, engages the element of risk associated with ozone loss in the stratosphere over the central United States in summer based upon the same reaction network that reduces stratospheric ozone over the Arctic. The summertime development of the upper-level anticyclonic flow over the United States, driven by the North American Monsoon, provides a means of retaining convectively injected water, thereby extending the time for catalytic ozone loss over the Great Plains. Trusted decadal forecasts of UV dosage over the United States in summer require understanding the response of this dynamical and photochemical system to increased forcing of the climate by increasing levels of CO2 and CH4.
RESUMEN
Accurate Rayleigh scattering cross sections are important for understanding the propagation of electromagnetic radiation in planetary atmospheres and for calibrating mirror reflectivity in high finesse optical cavities. In this study, we used Broadband Cavity Enhanced Spectroscopy (BBCES) to measure Rayleigh scattering cross sections for argon, carbon dioxide, sulfur hexafluoride, and methane between 333 and 363 nm, extending the region of available UV measurements for all four gases. Comparison of our results with refractive index based (n-based) calculations demonstrates excellent agreement for Ar and CO2, within 0.2% and 1.0% on average, respectively. For SF6, our mean Rayleigh scattering cross sections are lower by 2.2% on average relative to the n-based calculation and lie outside the 1-σ measurement uncertainty; however, the results still fall within our 2-σ uncertainty. The measured Rayleigh scattering cross sections for CH4 are in substantial disagreement (22%) with those calculated from the most recent n-based values in the literature and lie far outside our mean 1-σ uncertainty of 1.6%. Extrapolation of several older index of refraction measurements from visible wavelengths to the UV yields better agreement with our results for CH4, but the agreement is still generally outside our 1-σ measurement uncertainty. Use of the dispersion relation derived in this work provides significantly improved Rayleigh scattering cross sections for CH4 in the UV-A spectral region.
RESUMEN
The observed presence of water vapor convectively injected deep into the stratosphere over the United States can fundamentally change the catalytic chlorine/bromine free-radical chemistry of the lower stratosphere by shifting total available inorganic chlorine into the catalytically active free-radical form, ClO. This chemical shift markedly affects total ozone loss rates and makes the catalytic system extraordinarily sensitive to convective injection into the mid-latitude lower stratosphere in summer. Were the intensity and frequency of convective injection to increase as a result of climate forcing by the continued addition of CO(2) and CH(4) to the atmosphere, increased risk of ozone loss and associated increases in ultraviolet dosage would follow.
Asunto(s)
Atmósfera/química , Convección , Ozono/química , Estaciones del Año , Vapor , Rayos Ultravioleta , Dióxido de Carbono/química , Catálisis , Compuestos de Cloro/química , Metano/química , Dosis de RadiaciónRESUMEN
We describe here the Harvard integrated cavity output spectroscopy (ICOS) isotope instrument, a mid-IR infrared spectrometer using ICOS to make in situ measurements of the primary isotopologues of water vapor (H(2)O, HDO, and H(2) (18)O) in the upper troposphere and lower stratosphere (UTLS). The long path length provided by ICOS provides the sensitivity and accuracy necessary to measure these or other trace atmospheric species at concentrations in the ppbv range. The Harvard ICOS isotope instrument has been integrated onto NASA's WB-57 high-altitude research aircraft and to date has flown successfully in four field campaigns from winter 2004-2005 to the present. Off-axis alignment and a fully passive cavity ensure maximum robustness against the vibrationally hostile aircraft environment. The very simple instrument design permitted by off-axis ICOS is also helpful in minimizing contamination necessary for accurate measurements in the dry UTLS region. The instrument is calibrated in the laboratory via two separate water addition systems and crosscalibrated against other instruments. Calibrations have established an accuracy of 5% for all species. The instrument has demonstrated measurement precision of 0.14 ppmv, 0.10 ppbv, and 0.16 ppbv in 4 s averages for H(2)O, HDO, and H(2) (18)O, respectively. At a water vapor mixing ratio of 5 ppmv the isotopologue ratio precision is 50[per thousand] and 30[per thousand] for deltaD and delta(18)O, respectively.