Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Bioinformatics ; 39(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36484701

RESUMEN

SUMMARY: Whole-exome and targeted sequencing are widely utilized both in translational cancer genomics and in the setting of precision medicine. The benchmarking of computational methods and tools that are in continuous development is fundamental for the correct interpretation of somatic genomic profiling results. To this aim we developed synggen, a tool for the fast generation of large-scale realistic and heterogeneous cancer whole-exome and targeted sequencing synthetic datasets, which enables the incorporation of phased germline single nucleotide polymorphisms and complex allele-specific somatic genomic events. Synggen performances and effectiveness in generating synthetic cancer data are shown across different scenarios and considering different platforms with distinct characteristics. AVAILABILITY AND IMPLEMENTATION: synggen is freely available at https://bitbucket.org/CibioBCG/synggen/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Programas Informáticos , Genómica/métodos , Exoma , Neoplasias/genética
2.
NPJ Precis Oncol ; 8(1): 57, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429380

RESUMEN

Cancer is a complex disease influenced by a heterogeneous landscape of both germline genetic variants and somatic aberrations. While there is growing evidence suggesting an interplay between germline and somatic variants, and a substantial number of somatic aberrations in specific pathways are now recognized as hallmarks in many well-known forms of cancer, the interaction landscape between germline variants and the aberration of those pathways in cancer remains largely unexplored. Utilizing over 8500 human samples across 33 cancer types characterized by TCGA and considering binary traits defined using a large collection of somatic aberration profiles across ten well-known oncogenic signaling pathways, we conducted a series of GWAS and identified genome-wide and suggestive associations involving 276 SNPs. Among these, 94 SNPs revealed cis-eQTL links with cancer-related genes or with genes functionally correlated with the corresponding traits' oncogenic pathways. GWAS summary statistics for all tested traits were then used to construct a set of polygenic scores employing a customized computational strategy. Polygenic scores for 24 traits demonstrated significant performance and were validated using data from PCAWG and CCLE datasets. These scores showed prognostic value for clinical variables and exhibited significant effectiveness in classifying patients into specific cancer subtypes or stratifying patients with cancer-specific aggressive phenotypes. Overall, we demonstrate that germline genetics can describe patients' genetic liability to develop specific cancer molecular and clinical profiles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA