Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Eur J Immunol ; 54(4): e2350580, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38430129

RESUMEN

Recombinant human IL-2 has been used to treat inflammatory diseases and cancer; however, side effects like skin rashes limit the use of this therapeutic. To identify key molecules and cells inducing this side effect, we characterized IL-2-induced cutaneous immune reactions and investigated the relevance of CD25 (IL-2 receptor α) in the process. We injected IL-2 intradermally into WT mice and observed increases in immune cell subsets in the skin with preferential increases in frequencies of IL-4- and IL-13-producing group 2 innate lymphoid cells and IL-17-producing dermal γδ T cells. This overall led to a shift toward type 2/type 17 immune responses. In addition, using a novel topical genetic deletion approach, we reduced CD25 on skin, specifically on all cutaneous cells, and found that IL-2-dependent effects were reduced, hinting that CD25 - at least partly - induces this skin inflammation. Reduction of CD25 specifically on skin Tregs further augmented IL-2-induced immune cell infiltration, hinting that CD25 on skin Tregs is crucial to restrain IL-2-induced inflammation. Overall, our data support that innate lymphoid immune cells are key cells inducing side effects during IL-2 therapy and underline the significance of CD25 in this process.


Asunto(s)
Inmunidad Innata , Interleucina-2 , Ratones , Humanos , Animales , Interleucina-2/efectos adversos , Interleucina-2/metabolismo , Linfocitos , Inflamación , Linfocitos T Reguladores , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Piel
2.
Eur J Immunol ; 54(8): e2350946, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38763899

RESUMEN

Segmented filamentous bacteria (SFB) are members of the commensal intestinal microbiome. They are known to contribute to the postnatal maturation of the gut immune system, but also to augment inflammatory conditions in chronic diseases such as Crohn's disease. Living primary tissue slices are ultrathin multicellular sections of the intestine and provide a unique opportunity to analyze tissue-specific immune responses ex vivo. This study aimed to investigate whether supplementation of the gut flora with SFB promotes T helper 17 (Th17) cell responses in primary intestinal tissue slices ex vivo. Primary tissue slices were prepared from the small intestine of healthy Taconic mice with SFB-positive and SFB-negative microbiomes and stimulated with anti-CD3/CD28 or Concanavalin A. SFB-positive and -negative mice exhibited distinct microbiome compositions and Th17 cell frequencies in the intestine and complex microbiota including SFB induced up to 15-fold increase in Th17 cell-associated mediators, serum amyloid A (SAA), and immunoglobulin A (IgA) responses ex vivo. This phenotype could be transmitted by co-housing of mice. Our findings highlight that changes in the gut microbiome can be observed in primary intestinal tissue slices ex vivo. This makes the system very attractive for disease modeling and assessment of new therapies.


Asunto(s)
Microbioma Gastrointestinal , Homeostasis , Células Th17 , Animales , Células Th17/inmunología , Ratones , Microbioma Gastrointestinal/inmunología , Homeostasis/inmunología , Ratones Endogámicos C57BL , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología
3.
Toxicol Pathol ; 52(2-3): 123-137, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38888280

RESUMEN

Complex in vitro models (CIVMs) offer the potential to increase the clinical relevance of preclinical efficacy and toxicity assessments and reduce the reliance on animals in drug development. The European Society of Toxicologic Pathology (ESTP) and Society for Toxicologic Pathology (STP) are collaborating to highlight the role of pathologists in the development and use of CIVM. Pathologists are trained in comparative animal medicine which enhances their understanding of mechanisms of human and animal diseases, thus allowing them to bridge between animal models and humans. This skill set is important for CIVM development, validation, and data interpretation. Ideally, diverse teams of scientists, including engineers, biologists, pathologists, and others, should collaboratively develop and characterize novel CIVM, and collectively assess their precise use cases (context of use). Implementing a morphological CIVM evaluation should be essential in this process. This requires robust histological technique workflows, image analysis techniques, and needs correlation with translational biomarkers. In this review, we demonstrate how such tissue technologies and analytics support the development and use of CIVM for drug efficacy and safety evaluations. We encourage the scientific community to explore similar options for their projects and to engage with health authorities on the use of CIVM in benefit-risk assessment.


Asunto(s)
Patólogos , Patología , Toxicología , Humanos , Toxicología/métodos , Animales , Bioingeniería , Pruebas de Toxicidad , Evaluación Preclínica de Medicamentos , Técnicas In Vitro
4.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38673977

RESUMEN

Transient receptor potential canonical sub-family channel 3 (TRPC3) is considered to play a critical role in calcium homeostasis. However, there are no established findings in this respect with regard to TRPC6. Although the parathyroid gland is a crucial organ in calcium household regulation, little is known about the protein distribution of TRPC channels-especially TRPC3 and TRPC6-in this organ. Our aim was therefore to investigate the protein expression profile of TRPC3 and TRPC6 in healthy and diseased human parathyroid glands. Surgery samples from patients with healthy parathyroid glands and from patients suffering from primary hyperparathyroidism (pHPT) were investigated by immunohistochemistry using knockout-validated antibodies against TRPC3 and TRPC6. A software-based analysis similar to an H-score was performed. For the first time, to our knowledge, TRPC3 and TRPC6 protein expression is described here in the parathyroid glands. It is found in both chief and oxyphilic cells. Furthermore, the TRPC3 staining score in diseased tissue (pHPT) was statistically significantly lower than that in healthy tissue. In conclusion, TRPC3 and TRPC6 proteins are expressed in the human parathyroid gland. Furthermore, there is strong evidence indicating that TRPC3 plays a role in pHPT and subsequently in parathyroid hormone secretion regulation. These findings ultimately require further research in order to not only confirm our results but also to further investigate the relevance of these channels and, in particular, that of TRPC3 in the aforementioned physiological functions and pathophysiological conditions.


Asunto(s)
Regulación hacia Abajo , Hiperparatiroidismo Primario , Glándulas Paratiroides , Canales Catiónicos TRPC , Canal Catiónico TRPC6 , Humanos , Canales Catiónicos TRPC/metabolismo , Canales Catiónicos TRPC/genética , Hiperparatiroidismo Primario/metabolismo , Hiperparatiroidismo Primario/genética , Hiperparatiroidismo Primario/patología , Glándulas Paratiroides/metabolismo , Glándulas Paratiroides/patología , Femenino , Masculino , Canal Catiónico TRPC6/metabolismo , Canal Catiónico TRPC6/genética , Persona de Mediana Edad , Anciano , Adulto , Inmunohistoquímica , Hormona Paratiroidea/metabolismo
5.
J Med Virol ; 95(11): e29211, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37975336

RESUMEN

The emerging viruses SARS-CoV-2 and arenaviruses cause severe respiratory and hemorrhagic diseases, respectively. The production of infectious particles of both viruses and virus spread in tissues requires cleavage of surface glycoproteins (GPs) by host proprotein convertases (PCs). SARS-CoV-2 and arenaviruses rely on GP cleavage by PCs furin and subtilisin kexin isozyme-1/site-1 protease (SKI-1/S1P), respectively. We report improved luciferase-based reporter cell lines, named luminescent inducible proprotein convertase reporter cells that we employ to monitor PC activity in its authentic subcellular compartment. Using these sensor lines we screened a small compound library in high-throughput manner. We identified 23 FDA-approved small molecules, among them monensin which displayed broad activity against furin and SKI-1/S1P. Monensin inhibited arenaviruses and SARS-CoV-2 in a dose-dependent manner. We observed a strong reduction in infectious particle release upon monensin treatment with little effect on released genome copies. This was reflected by inhibition of SARS-CoV-2 spike processing suggesting the release of immature particles. In a proof of concept experiment using human precision cut lung slices, monensin potently inhibited SARS-CoV-2 infection, evidenced by reduced infectious particle release. We propose that our PC sensor pipeline is a suitable tool to identify broad-spectrum antivirals with therapeutic potential to combat current and future emerging viruses.


Asunto(s)
Arenavirus , Furina , Humanos , Furina/metabolismo , Proteínas del Envoltorio Viral/genética , Monensina/metabolismo , Monensina/farmacología , Arenavirus/genética , Arenavirus/metabolismo , Antivirales/uso terapéutico
6.
Toxicol Pathol ; 51(3): 92-111, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37449403

RESUMEN

In situ hybridization (ISH) is used for the localization of specific nucleic acid sequences in cells or tissues by complementary binding of a nucleotide probe to a specific target nucleic acid sequence. In the last years, the specificity and sensitivity of ISH assays were improved by innovative techniques like synthetic nucleic acids and tandem oligonucleotide probes combined with signal amplification methods like branched DNA, hybridization chain reaction and tyramide signal amplification. These improvements increased the application spectrum for ISH on formalin-fixed paraffin-embedded tissues. ISH is a powerful tool to investigate DNA, mRNA transcripts, regulatory noncoding RNA, and therapeutic oligonucleotides. ISH can be used to obtain spatial information of a cell type, subcellular localization, or expression levels of targets. Since immunohistochemistry and ISH share similar workflows, their combination can address simultaneous transcriptomics and proteomics questions. The goal of this review paper is to revisit the current state of the scientific approaches in ISH and its application in drug research and development.


Asunto(s)
Patología Molecular , Opinión Pública , Adhesión en Parafina , Hibridación in Situ , ARN Mensajero/metabolismo , ADN
7.
Toxicol Pathol ; 51(4): 216-224, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37732701

RESUMEN

The European Society of Toxicologic Pathology (ESTP) initiated a survey through its Pathology 2.0 workstream in partnership with sister professional societies in Europe and North America to generate a snapshot of artificial intelligence (AI) usage in the field of toxicologic pathology. In addition to demographic information, some general questions explored AI relative to (1) the current status of adoption across organizations; (2) technical and methodological aspects; (3) perceived business value and finally; and (4) roadblocks and perspectives. AI has become increasingly established in toxicologic pathology with most pathologists being supportive of its development despite some areas of uncertainty. A salient feature consisted of the variability of AI awareness and adoption among the responders, as the spectrum extended from pathologists having developed familiarity and technical skills in AI, to colleagues who had no interest in AI as a tool in toxicologic pathology. Despite a general enthusiasm for these techniques, the overall understanding and trust in AI algorithms as well as their added value in toxicologic pathology were generally low, suggesting room for the need for increased awareness and education. This survey will serve as a basis to evaluate the evolution of AI penetration and acceptance in this domain.


Asunto(s)
Inteligencia Artificial , Patólogos , Humanos , Algoritmos , Europa (Continente)
8.
Regul Toxicol Pharmacol ; 130: 105129, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35124138

RESUMEN

Lung cancer following inhalation in rodents is a major concern regarding exposure to cobalt substances. However, little information is available on adverse effects and toxicity following long-term inhalation exposure to poorly soluble cobalt substances with low bioavailability. Thus, the present study focused on pulmonary effects of the poorly soluble tricobalt tetraoxide (5, 20, 80 mg/m³) in a 28-day inhalation exposure study. Lung weights increased with increasing exposures. Bronchoalveolar lavage fluid analysis and histopathology revealed lung tissue inflammation at the mid-dose with increasing severity in the high-dose group and post-exposure persistency. Markers for cellular damage and cell proliferation were statistically significantly increased. No increase in 8-OH-dG lesions was observed, indicating an absence of oxidative DNA lesions. The primary effect of inhaled Co3O4 particles is inflammation of the respiratory tract strongly resembling responses of inhaled "inert dust" substances, with a NOAEC of 5 mg/m³ under the conditions of this test.


Asunto(s)
Cobalto/toxicidad , Pulmón/efectos de los fármacos , Óxidos/toxicidad , Neumonía/patología , Animales , Líquido del Lavado Bronquioalveolar/citología , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Exposición por Inhalación , Masculino , Tamaño de la Partícula , Distribución Aleatoria , Ratas , Pruebas de Toxicidad
9.
Int J Mol Sci ; 23(9)2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35563514

RESUMEN

Similar to many other respiratory viruses, SARS-CoV-2 targets the ciliated cells of the respiratory epithelium and compromises mucociliary clearance, thereby facilitating spread to the lungs and paving the way for secondary infections. A detailed understanding of mechanism involved in ciliary loss and subsequent regeneration is crucial to assess the possible long-term consequences of COVID-19. The aim of this study was to characterize the sequence of histological and ultrastructural changes observed in the ciliated epithelium during and after SARS-CoV-2 infection in the golden Syrian hamster model. We show that acute infection induces a severe, transient loss of cilia, which is, at least in part, caused by cilia internalization. Internalized cilia colocalize with membrane invaginations, facilitating virus entry into the cell. Infection also results in a progressive decline in cells expressing the regulator of ciliogenesis FOXJ1, which persists beyond virus clearance and the termination of inflammatory changes. Ciliary loss triggers the mobilization of p73+ and CK14+ basal cells, which ceases after regeneration of the cilia. Although ciliation is restored after two weeks despite the lack of FOXJ1, an increased frequency of cilia with ultrastructural alterations indicative of secondary ciliary dyskinesia is observed. In summary, the work provides new insights into SARS-CoV-2 pathogenesis and expands our understanding of virally induced damage to defense mechanisms in the conducting airways.


Asunto(s)
COVID-19 , Animales , Cilios/metabolismo , Cricetinae , Epitelio , Homeostasis , Mesocricetus , Mucosa Respiratoria/metabolismo , SARS-CoV-2
10.
Am J Respir Cell Mol Biol ; 65(5): 544-554, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34181859

RESUMEN

Human rhinovirus (RV) is a major risk factor for chronic obstructive pulmonary disease (COPD) and asthma exacerbations. The exploration of RV pathogenesis has been hampered by a lack of disease-relevant model systems. We performed a detailed characterization of host responses to RV infection in human lung tissue ex vivo and investigated whether these responses are disease relevant for patients with COPD and asthma. In addition, impact of the viral replication inhibitor rupintrivir was evaluated. Human precision-cut lung slices (PCLS) were infected with RV1B with or without rupintrivir. At Days 1 and 3 after infection, RV tissue localization, tissue viability, and viral load were determined. To characterize host responses to infection, mediator and whole genome analyses were performed. RV successfully replicated in PCLS airway epithelial cells and induced both antiviral and proinflammatory cytokines such as IFNα2a, CXCL10, CXCL11, IFN-γ, TNFα, and CCL5. Genomic analyses revealed that RV not only induced antiviral immune responses but also triggered changes in epithelial cell-associated pathways. Strikingly, the RV response in PCLS was reflective of gene expression changes described in patients with COPD and asthma. Although RV-induced host immune responses were abrogated by rupintrivir, RV-triggered epithelial processes were largely refractory to antiviral treatment. Detailed analysis of RV-infected human PCLS and comparison with gene signatures of patients with COPD and asthma revealed that the human RV PCLS model represents disease-relevant biological mechanisms that can be partially inhibited by a well-known antiviral compound and provide an outstanding opportunity to evaluate novel therapeutics.


Asunto(s)
Asma/genética , Interacciones Huésped-Patógeno/genética , Pulmón/virología , Infecciones por Picornaviridae/genética , Enfermedad Pulmonar Obstructiva Crónica/genética , Anciano , Antivirales/farmacología , Asma/patología , Bronquios/patología , Bronquios/fisiología , Células Epiteliales/patología , Células Epiteliales/virología , Femenino , Perfilación de la Expresión Génica , Genoma Humano , Humanos , Isoxazoles/farmacología , Pulmón/fisiología , Masculino , Persona de Mediana Edad , Fenilalanina/análogos & derivados , Fenilalanina/farmacología , Infecciones por Picornaviridae/tratamiento farmacológico , Infecciones por Picornaviridae/patología , Enfermedad Pulmonar Obstructiva Crónica/patología , Pirrolidinonas/farmacología , Rhinovirus/patogenicidad , Valina/análogos & derivados , Valina/farmacología
11.
Toxicol Appl Pharmacol ; 424: 115598, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34077769

RESUMEN

The final results from this multi-dose, 90-day inhalation toxicology study in the rat with life-time post-exposure observation have shown a significant fundamental difference in pathological response and tumorgenicity between brake dust generated from brake pads manufactured with chrysotile or from chrysotile alone in comparison to the amphiboles, crocidolite and amosite asbestos. The groups exposed to brake dust showed no significant pathological or tumorigenic response in the respiratory track compared to the air control group at exposure concentrations and deposited doses well above those at which humans have been exposed. Slight alveolar/interstitial macrophage accumulation of particles was noted. Wagner grades were 1-2 (1 = control group), similar to the TiO2 particle control group. Chrysotile was not biopersistent, exhibiting in the lung a deterioration of its matrix which results in breakage into particles and short fibers which can be cleared by alveolar macrophages and which can continue to dissolve. Particle-laden macrophage accumulation was observed, leading to a very-slight interstitial inflammatory response (Wagner grade 1-3). There was no peribronchiolar inflammation, occasional very-slight interstitial fibrosis (Wagner grade 4), and no exposure-related tumorigenic response. The pathological response of crocidolite and amosite compared to the brake dust and chrysotile was clearly differentiated by the histopathology and the confocal analysis. Crocidolite and amosite induced persistent inflammation, microgranulomas, persistent fibrosis (Wagner grades 4), and a dose-related lung tumor response. Confocal microscopy quantified extensive inflammatory response and collagen development in the lung, visceral and parietal pleura as well as pleural adhesions. These results provide a clear foundation for differentiating the innocuous effects of brake dust exposure from the adverse effects following amphibole asbestos exposure.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Asbesto Amosita/toxicidad , Asbesto Crocidolita/toxicidad , Enfermedades Pulmonares/inducido químicamente , Pulmón/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Pulmón/patología , Enfermedades Pulmonares/patología , Microscopía Confocal , Ratas , Factores de Tiempo
12.
Toxicol Pathol ; 49(1): 110-228, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33393872

RESUMEN

The INHAND (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions) Project (www.toxpath.org/inhand.asp) is a joint initiative of the Societies of Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP), and North America (STP) to develop an internationally accepted nomenclature for proliferative and nonproliferative lesions in laboratory animals. The purpose of this publication is to provide a standardized nomenclature for classifying microscopic lesions observed in most tissues and organs from the minipig used in nonclinical safety studies. Some of the lesions are illustrated by color photomicrographs. The standardized nomenclature presented in this document is also available electronically on the internet (http://www.goreni.org/). Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes spontaneous lesions as well as lesions induced by exposure to test materials. Relevant infectious and parasitic lesions are included as well. A widely accepted and utilized international harmonization of nomenclature for lesions in laboratory animals will provide a common language among regulatory and scientific research organizations in different countries and increase and enrich international exchanges of information among toxicologists and pathologists.


Asunto(s)
Animales de Laboratorio , Animales , Bases de Datos Factuales , Europa (Continente) , Japón , Porcinos , Porcinos Enanos
13.
Arch Toxicol ; 95(8): 2785-2796, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34185104

RESUMEN

Pyrrolizidine alkaloids (PAs) are secondary plant metabolites synthesized by a wide range of plants as protection against herbivores. These toxins are found worldwide and pose a threat to human health. PAs induce acute effects like hepatic sinusoidal obstruction syndrome and pulmonary arterial hypertension. Moreover, chronic exposure to low doses can induce cancer and liver cirrhosis in laboratory animals. The mechanisms causing hepatotoxicity have been investigated previously. However, toxic effects in the lung are less well understood, and especially data on the correlation effects with individual chemical structures of different PAs are lacking. The present study focuses on the identification of gene expression changes in vivo in rat lungs after exposure to six structurally different PAs (echimidine, heliotrine, lasiocarpine, senecionine, senkirkine, and platyphylline). Rats were treated by gavage with daily doses of 3.3 mg PA/kg bodyweight for 28 days and transcriptional changes in the lung and kidney were investigated by whole-genome microarray analysis. The results were compared with recently published data on gene regulation in the liver. Using bioinformatics data mining, we identified inflammatory responses as a predominant feature in rat lungs. By comparison, in liver, early molecular consequences to PAs were characterized by alterations in cell-cycle regulation and DNA damage response. Our results provide, for the first time, information about early molecular effects in lung tissue after subacute exposure to PAs, and demonstrates tissue-specificity of PA-induced molecular effects.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Inflamación/inducido químicamente , Pulmón/efectos de los fármacos , Alcaloides de Pirrolicidina/toxicidad , Animales , Ciclo Celular/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Daño del ADN/efectos de los fármacos , Minería de Datos , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/genética , Inflamación/patología , Pulmón/patología , Masculino , Análisis por Micromatrices , Alcaloides de Pirrolicidina/administración & dosificación , Alcaloides de Pirrolicidina/química , Ratas , Ratas Endogámicas F344 , Transcriptoma
14.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33808256

RESUMEN

Histiocytic sarcomas refer to highly aggressive tumors with a poor prognosis that respond poorly to conventional treatment approaches. Oncolytic viruses, which have gained significant traction as a cancer therapy in recent decades, represent a promising option for treating histiocytic sarcomas through their replication and/or by modulating the tumor microenvironment. The live attenuated canine distemper virus (CDV) vaccine strain Onderstepoort represents an attractive candidate for oncolytic viral therapy. In the present study, oncolytic virotherapy with CDV was used to investigate the impact of this virus infection on tumor cell growth through direct oncolytic effects or by virus-mediated modulation of the tumor microenvironment with special emphasis on angiogenesis, expression of selected MMPs and TIMP-1 and tumor-associated macrophages in a murine xenograft model of canine histiocytic sarcoma. Treatment of mice with xenotransplanted canine histiocytic sarcomas using CDV induced overt retardation in tumor progression accompanied by necrosis of neoplastic cells, increased numbers of intratumoral macrophages, reduced angiogenesis and modulation of the expression of MMPs and TIMP-1. The present data suggest that CDV inhibits tumor growth in a multifactorial way, including direct cell lysis and reduction of angiogenesis and modulation of MMPs and their inhibitor TIMP-1, providing further support for the concept of its role in oncolytic therapies.


Asunto(s)
Sarcoma Histiocítico/metabolismo , Neoplasias/metabolismo , Viroterapia Oncolítica/métodos , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Moquillo/metabolismo , Moquillo/virología , Virus del Moquillo Canino/patogenicidad , Enfermedades de los Perros/inmunología , Perros , Femenino , Xenoinjertos , Sarcoma Histiocítico/veterinaria , Sarcoma Histiocítico/virología , Metaloendopeptidasas/metabolismo , Ratones , Ratones SCID , Necrosis/metabolismo , Neoplasias/virología , Neovascularización Patológica/metabolismo , Virus Oncolíticos , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Microambiente Tumoral/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Arch Toxicol ; 94(5): 1739-1751, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32419051

RESUMEN

Pyrrolizidine alkaloids (PA) are secondary plant metabolites that occur as food and feed contaminants. Acute and subacute PA poisoning can lead to severe liver damage in humans and animals, comprising liver pain, hepatomegaly and the development of ascites due to occlusion of the hepatic sinusoids (veno-occlusive disease). Chronic exposure to low levels of PA can induce liver cirrhosis and liver cancer. However, it is not well understood which transcriptional changes are induced by PA and whether all hepatotoxic PA, regardless of their structure, induce similar responses. Therefore, a 28-day subacute rat feeding study was performed with six structurally different PA heliotrine, echimidine, lasiocarpine, senecionine, senkirkine, and platyphylline, administered at not acutely toxic doses from 0.1 to 3.3 mg/kg body weight. This dose range is relevant for humans, since consumption of contaminated tea may result in doses of ~ 8 µg/kg in adults and cases of PA ingestion by contaminated food was reported for infants with doses up to 3 mg/kg body weight. ALT and AST were not increased in all treatment groups. Whole-genome microarray analyses revealed pronounced effects on gene expression in the high-dose treatment groups resulting in a set of 36 commonly regulated genes. However, platyphylline, the only 1,2-saturated and, therefore, presumably non-hepatotoxic PA, did not induce significant expression changes. Biological functions identified to be affected by high-dose treatments (3.3 mg/kg body weight) comprise cell-cycle regulation associated with DNA damage response. These functions were found to be affected by all analyzed 1,2-unsaturated PA.In conclusion, 1,2-unsaturated hepatotoxic PA induced cell cycle regulation processes associated with DNA damage response. Similar effects were observed for all hepatotoxic PA. Effects were observed in a dose range inducing no histopathological alterations and no increase in liver enzymes. Therefore, transcriptomics studies identified changes in expression of genes known to be involved in response to genotoxic compounds at PA doses relevant to humans under worst case exposure scenarios.


Asunto(s)
Alcaloides de Pirrolicidina/toxicidad , Animales , Daño del ADN , Expresión Génica , Humanos , Hígado , Neoplasias Hepáticas , Plantas , Ratas , Relación Estructura-Actividad
17.
Am J Pathol ; 187(6): 1380-1398, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28432872

RESUMEN

Humanized mice engrafted with human hematopoietic stem cells and developing functional human T-cell adaptive responses are in critical demand to test human-specific therapeutics. We previously showed that humanized mice immunized with long-lived induced-dendritic cells loaded with the pp65 viral antigen (iDCpp65) exhibited a faster development and maturation of T cells. Herein, we evaluated these effects in a long-term (36 weeks) nonclinical model using two stem cell donors to assess efficacy and safety. Relative to baseline, iDCpp65 immunization boosted the output of effector memory CD4+ T cells in peripheral blood and lymph nodes. No weight loss, human malignancies, or systemic graft-versus-host (GVH) disease were observed. However, for one reconstitution cohort, some mice immunized with iDCpp65 showed GVH-like signs on the skin. Histopathology analyses of the inflamed skin revealed intrafollicular and perifollicular human CD4+ cells near F4/80+ mouse macrophages around hair follicles. In spleen, CD4+ cells formed large clusters surrounded by mouse macrophages. In plasma, high levels of human T helper 2-type inflammatory cytokines were detectable, which activated in vitro the STAT5 pathway of murine macrophages. Despite this inflammatory pattern, human CD8+ T cells from mice with GVH reacted against the pp65 antigen in vitro. These results uncover a dynamic cross-species interaction between human memory T cells and mouse macrophages in the skin and lymphatic tissues of humanized mice.


Asunto(s)
Enfermedad Injerto contra Huésped/inmunología , Macrófagos/inmunología , Piel/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Antígenos CD34/análisis , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Comunicación Celular/inmunología , Línea Celular , Citocinas/sangre , Proteínas del Citoesqueleto , Células Dendríticas/trasplante , Modelos Animales de Enfermedad , Enfermedad Injerto contra Huésped/patología , Trasplante de Células Madre Hematopoyéticas , Xenoinjertos , Ratones Endogámicos NOD , Proteínas de Microfilamentos , Fosfoproteínas/inmunología , Piel/patología
18.
J Nanobiotechnology ; 16(1): 16, 2018 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-29463257

RESUMEN

BACKGROUND: Understanding the molecular mechanisms of nanomaterial interacting with cellular systems is important for appropriate risk assessment. The identification of early biomarkers for potential (sub-)chronic effects of nanoparticles provides a promising approach towards cost-intensive and animal consuming long-term studies. As part of a 90-day inhalation toxicity study with CeO2 NM-212 and BaSO4 NM-220 the present investigations on gene expression and immunohistochemistry should reveal details on underlying mechanisms of pulmonary effects. The role of alveolar epithelial cells type II (AEII cells) is focused since its contribution to defense against inhaled particles and potentially resulting adverse effects is assumed. Low dose levels should help to specify particle-related events, including inflammation and oxidative stress. RESULTS: Rats were exposed to clean air, 0.1, 0.3, 1.0, and 3.0 mg/m3 CeO2 NM-212 or 50.0 mg/m3 BaSO4 NM-220 and the expression of 391 genes was analyzed in AEII cells after one, 28 and 90 days exposure. A total number of 34 genes was regulated, most of them related to inflammatory mediators. Marked changes in gene expression were measured for Ccl2, Ccl7, Ccl17, Ccl22, Ccl3, Ccl4, Il-1α, Il-1ß, and Il-1rn (inflammation), Lpo and Noxo1 (oxidative stress), and Mmp12 (inflammation/lung cancer). Genes related to genotoxicity and apoptosis did not display marked regulation. Although gene expression was less affected by BaSO4 compared to CeO2 the gene pattern showed great overlap. Gene expression was further analyzed in liver and kidney tissue showing inflammatory responses in both organs and marked downregulation of oxidative stress related genes in the kidney. Increases in the amount of Ce were measured in liver but not in kidney tissue. Investigation of selected genes on protein level revealed increased Ccl2 in bronchoalveolar lavage of exposed animals and increased Lpo and Mmp12 in the alveolar epithelia. CONCLUSION: AEII cells contribute to CeO2 nanoparticle caused inflammatory and oxidative stress reactions in the respiratory tract by the release of related mediators. Effects of BaSO4 exposure are low. However, overlap between both substances were detected and support identification of potential early biomarkers for nanoparticle effects on the respiratory system. Signs for long-term effects need to be further evaluated by comparison to a respective exposure setting.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Sulfato de Bario/efectos adversos , Cerio/efectos adversos , Regulación de la Expresión Génica/efectos de los fármacos , Exposición por Inhalación/efectos adversos , Nanopartículas/efectos adversos , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Animales , Apoptosis/efectos de los fármacos , Sulfato de Bario/administración & dosificación , Células Cultivadas , Cerio/administración & dosificación , Reparación del ADN/efectos de los fármacos , Femenino , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/patología , Nanopartículas/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Ratas Wistar
19.
Part Fibre Toxicol ; 14(1): 23, 2017 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-28701164

RESUMEN

BACKGROUND: Nanomaterials like cerium oxide and barium sulfate are frequently processed in industrial and consumer products and exposure of humans and other organisms is likely. Generally less information is given on health effects and toxicity, especially regarding long-term exposure to low nanoparticle doses. Since inhalation is still the major route of uptake the present study focused on pulmonary effects of CeO2NM-212 (0.1, 0.3, 1.0, 3.0 mg/m3) and BaSO4NM-220 nanoparticles (50.0 mg/m3) in a 90-day exposure setup. To define particle-related effects and potential mechanisms of action, observations in histopathology, bronchoalveolar lavage and immunohistochemistry were linked to pulmonary deposition and clearance rates. This further allows evaluation of potential overload related effects. RESULTS: Lung burden values increased with increasing nanoparticle dose levels and ongoing exposure. At higher doses, cerium clearance was impaired, suggesting lung overload. Barium elimination was extremely rapid and without any signs of overload. Bronchoalveolar lavage fluid analysis and histopathology revealed lung tissue inflammation with increasing severity and post-exposure persistency for CeO2. Also, marker levels for genotoxicity and cell proliferation were significantly increased. BaSO4 showed less inflammation or persistency of effects and particularly affected the nasal cavity. CONCLUSION: CeO2 nanoparticles penetrate the alveolar space and affect the respiratory tract after inhalation mainly in terms of inflammation. Effects at low dose levels and post-exposure persistency suggest potential long-term effects and a notable relevance for human health. The generated data might be useful to improve nanoparticle risk assessment and threshold value generation. Mechanistic investigations at conditions of non-overload and absent inflammation should be further investigated in future studies.


Asunto(s)
Sulfato de Bario/toxicidad , Cerio/toxicidad , Exposición por Inhalación , Pulmón/efectos de los fármacos , Nanopartículas , Neumonía/inducido químicamente , Aerosoles , Sulfato de Bario/administración & dosificación , Sulfato de Bario/metabolismo , Biomarcadores/metabolismo , Carga Corporal (Radioterapia) , Líquido del Lavado Bronquioalveolar/química , Cerio/administración & dosificación , Cerio/metabolismo , Relación Dosis-Respuesta a Droga , Pulmón/metabolismo , Pulmón/patología , Neumonía/metabolismo , Neumonía/patología , Medición de Riesgo , Factores de Tiempo , Distribución Tisular
20.
J Food Sci Technol ; 54(10): 3251-3259, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28974810

RESUMEN

Pork is often marketed in packages with high oxygen atmosphere (MAP) or vacuum to improve shelf life and appearance. As silver ions have antibacterial effects, food contact films coated with silver might improve the shelf life of meat. In the present study, pork was wrapped in commercially available films, coated with nanosilver particles, and stored in the two packaging variants MAP and vacuum for 12 days. During storage, samples were analyzed on days 1 (before packaging), 4, 8 and 12 for microbiological contamination, meat quality (e.g., pH, color), and for the percentages of the myoglobin (Mb) redox forms. In addition, the effects of the film were examined after inoculation of the meat with high quantities of methicillin-resistant Staphylococcus aureus (MRSA) cells before vacuum storage for 8 days. MAP storage resulted in higher lightness (L*) values, lower liquid loss and higher Mb oxidation compared to vacuum. Microbiological spoilage was partly affected by the packaging variants with reducing effects of the MAP. The nanosilver-coating only affects the Mb redox form percentages of the pork cutlets and on day 4 the L* values, whereas microbiological parameters were not influenced. As the nanosilver coating had no influence on the total viable bacteria counts as well as Pseudomonas spp., Enterobacteriaceae and MRSA counts, an advantage of the nanosilver coating on the shelf life could be excluded.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA