Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 29(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38893295

RESUMEN

Chronic inflammation contributes to a number of diseases. Therefore, control of the inflammatory response is an important therapeutic goal. To identify novel anti-inflammatory compounds, we synthesized and screened a library of 80 pyrazolo[1,5-a]quinazoline compounds and related derivatives. Screening of these compounds for their ability to inhibit lipopolysaccharide (LPS)-induced nuclear factor κB (NF-κB) transcriptional activity in human THP-1Blue monocytic cells identified 13 compounds with anti-inflammatory activity (IC50 < 50 µM) in a cell-based test system, with two of the most potent being compounds 13i (5-[(4-sulfamoylbenzyl)oxy]pyrazolo[1,5-a]quinazoline-3-carboxamide) and 16 (5-[(4-(methylsulfinyl)benzyloxy]pyrazolo[1,5-a]quinazoline-3-carboxamide). Pharmacophore mapping of potential targets predicted that 13i and 16 may be ligands for three mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase 2 (ERK2), p38α, and c-Jun N-terminal kinase 3 (JNK3). Indeed, molecular modeling supported that these compounds could effectively bind to ERK2, p38α, and JNK3, with the highest complementarity to JNK3. The key residues of JNK3 important for this binding were identified. Moreover, compounds 13i and 16 exhibited micromolar binding affinities for JNK1, JNK2, and JNK3. Thus, our results demonstrate the potential for developing lead anti-inflammatory drugs based on the pyrazolo[1,5-a]quinazoline and related scaffolds that are targeted toward MAPKs.


Asunto(s)
Antiinflamatorios , Quinazolinas , Humanos , Quinazolinas/farmacología , Quinazolinas/química , Quinazolinas/síntesis química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/síntesis química , FN-kappa B/metabolismo , FN-kappa B/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Simulación del Acoplamiento Molecular , Pirazoles/química , Pirazoles/farmacología , Pirazoles/síntesis química , Relación Estructura-Actividad , Células THP-1
2.
Molecules ; 28(8)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37110594

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive memory loss and cognitive impairment due in part to a severe loss of cholinergic neurons in specific brain areas. AD is the most common type of dementia in the aging population. Although several acetylcholinesterase (AChE) inhibitors are currently available, their performance sometimes yields unexpected results. Thus, research is ongoing to find potentially therapeutic AChE inhibitory agents, both from natural and synthetic sources. Here, we synthesized 13 new lupinine triazole derivatives and evaluated them, along with 50 commercial lupinine-based esters of different carboxylic acids, for AChE inhibitory activity. The triazole derivative 15 [1S,9aR)-1-((4-(4-(benzyloxy)-3-methoxyphenyl)-1H-1,2,3-triazol-1-yl)methyl)octahydro-2H-quinolizine)] exhibited the most potent AChE inhibitory activity among all 63 lupinine derivatives, and kinetic analysis demonstrated that compound 15 was a mixed-type AChE inhibitor. Molecular docking studies were performed to visualize interaction between this triazole derivative and AChE. In addition, a structure-activity relationship (SAR) model developed using linear discriminant analysis (LDA) of 11 SwissADME descriptors from the 50 lupinine esters revealed 5 key physicochemical features that allowed us to distinguish active versus non-active compounds. Thus, this SAR model could be applied for design of more potent lupinine ester-based AChE inhibitors.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Anciano , Simulación del Acoplamiento Molecular , Acetilcolinesterasa/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Cinética , Inhibidores de la Colinesterasa/química , Relación Estructura-Actividad , Enfermedad de Alzheimer/tratamiento farmacológico , Triazoles/química
3.
Molecules ; 28(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37375361

RESUMEN

The c-Jun N-terminal kinase (JNK) family includes three proteins (JNK1-3) that regulate many physiological processes, including cell proliferation and differentiation, cell survival, and inflammation. Because of emerging data suggesting that JNK3 may play an important role in neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease, as well as cancer pathogenesis, we sought to identify JNK inhibitors with increased selectivity for JNK3. A panel of 26 novel tryptanthrin-6-oxime analogs was synthesized and evaluated for JNK1-3 binding (Kd) and inhibition of cellular inflammatory responses. Compounds 4d (8-methoxyindolo[2,1-b]quinazolin-6,12-dione oxime) and 4e (8-phenylindolo[2,1-b]quinazolin-6,12-dione oxime) had high selectivity for JNK3 versus JNK1 and JNK2 and inhibited lipopolysaccharide (LPS)-induced nuclear factor-κB/activating protein 1 (NF-κB/AP-1) transcriptional activity in THP-1Blue cells and interleukin-6 (IL-6) production by MonoMac-6 monocytic cells in the low micromolar range. Likewise, compounds 4d, 4e, and pan-JNK inhibitor 4h (9-methylindolo[2,1-b]quinazolin-6,12-dione oxime) decreased LPS-induced c-Jun phosphorylation in MonoMac-6 cells, directly confirming JNK inhibition. Molecular modeling suggested modes of binding interaction of these compounds in the JNK3 catalytic site that were in agreement with the experimental data on JNK3 binding. Our results demonstrate the potential for developing anti-inflammatory drugs based on these nitrogen-containing heterocyclic systems with selectivity for JNK3.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos , Lipopolisacáridos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Lipopolisacáridos/farmacología , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Fosforilación , Oximas/farmacología , Oximas/química
4.
Molecules ; 28(21)2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-37959750

RESUMEN

Echinacea purpurea (L.) Moench is a medicinal plant commonly used for the treatment of upper respiratory tract infections, the common cold, sore throat, migraine, colic, stomach cramps, and toothaches and the promotion of wound healing. Based on the known pharmacological properties of essential oils (EOs), we hypothesized that E. purpurea EOs may contribute to these medicinal properties. In this work, EOs from the flowers of E. purpurea were steam-distilled and analyzed by gas chromatography-mass spectrometry (GC-MS), GC with flame-ionization detection (GC-FID), and chiral GC-MS. The EOs were also evaluated for in vitro antimicrobial and innate immunomodulatory activity. About 87 compounds were identified in five samples of the steam-distilled E. purpurea EO. The major components of the E. purpurea EO were germacrene D (42.0 ± 4.61%), α-phellandrene (10.09 ± 1.59%), ß-caryophyllene (5.75 ± 1.72%), γ-curcumene (5.03 ± 1.96%), α-pinene (4.44 ± 1.78%), δ-cadinene (3.31 ± 0.61%), and ß-pinene (2.43 ± 0.98%). Eleven chiral compounds were identified in the E. purpurea EO, including α-pinene, sabinene, ß-pinene, α-phellandrene, limonene, ß-phellandrene, α-copaene, ß-elemene, ß-caryophyllene, germacrene D, and δ-cadinene. Analysis of E. purpurea EO antimicrobial activity showed that they inhibited the growth of several bacterial species, although the EO did not seem to be effective for Staphylococcus aureus. The E. purpurea EO and its major components induced intracellular calcium mobilization in human neutrophils. Additionally, pretreatment of human neutrophils with the E. purpurea EO or (+)-δ-cadinene suppressed agonist-induced neutrophil calcium mobilization and chemotaxis. Moreover, pharmacophore mapping studies predicted two potential MAPK targets for (+)-δ-cadinene. Our results are consistent with previous reports on the innate immunomodulatory activities of ß-caryophyllene, α-phellandrene, and germacrene D. Thus, this study identified δ-cadinene as a novel neutrophil agonist and suggests that δ-cadinene may contribute to the reported immunomodulatory activity of E. purpurea.


Asunto(s)
Antiinfecciosos , Echinacea , Aceites Volátiles , Humanos , Aceites Volátiles/química , Calcio , Vapor , Cromatografía de Gases y Espectrometría de Masas , Antiinfecciosos/química
5.
Molecules ; 28(18)2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37764432

RESUMEN

The genus Saussurea has been used in the preparation of therapies for a number of medical problems, yet not much is known about the therapeutic high-molecular-weight compounds present in extracts from these plants. Since polysaccharides are important in immune modulation, we investigated the chemical composition and immunomodulatory activity of Saussurea salicifolia L. and Saussurea frolovii Ledeb polysaccharides. Water-soluble polysaccharides from the aerial parts of these plants were extracted using water at pHs of 2 and 6 and subsequently precipitated in ethanol to obtain fractions SSP2 and SSP6 from S. salicifolia and fractions SSF2 and SSF6 from S. frolovii. The molecular weights of fractions SSP2, SSP6, SFP2, and SFP6 were estimated to be 143.7, 113.2, 75.3, and 64.3 kDa, respectively. The polysaccharides from S. frolovii contained xylose (67.1-71.7%) and glucose (28.3-32.9%), whereas the polysaccharides from S. frolovii contained xylose (63.1-76.7%), glucose (11.8-19.2%), galactose (4.7-8.3%), and rhamnose (6.8-9.4%). Fractions SSP2, SSP6, and SFP2 stimulated nitric oxide (NO) production by murine macrophages, and NO production induced by SSP2, SSP6, and SFP2 was not inhibited by polymyxin B treatment of the fractions, whereaspolymyxin B treatment diminished the effects of SFP6, suggesting that SFP6 could contain lipopolysaccharide (LPS). The LPS-free fractions SSP2, SSP6, and SFP2 had potent immunomodulatory activity, induced NO production, and activated transcription factors NF-κB/AP-1 in human monocytic THP-1 cells and cytokine production by human MonoMac-6 monocytic cells, including interleukin (IL)-1α, IL-1ß, IL-6, granulocyte macrophage colony-stimulating factor (GM-CSF), interferon-γ, monocyte chemotactic protein 1 (MCP-1), and tumor necrosis factor (TNF). These data suggest that at least part of the beneficial therapeutic effects reported for water extracts of the Saussurea species are due to the modulation of leukocyte functions by polysaccharides.


Asunto(s)
Saussurea , Humanos , Animales , Ratones , Xilosa , Polisacáridos/farmacología , Interferón gamma , Lipopolisacáridos/farmacología , Glucosa
6.
Molecules ; 27(15)2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35956847

RESUMEN

Grindelia squarrosa (Pursh) Dunal is used in traditional medicine for treating various diseases; however, little is known about the immunomodulatory activity of essential oils from this plant. Thus, we isolated essential oils from the flowers (GEOFl) and leaves (GEOLv) of G. squarrosa and evaluated the chemical composition and innate immunomodulatory activity of these essential oils. Compositional analysis of these essential oils revealed that the main components were α-pinene (24.7 and 23.2% in GEOFl and GEOLv, respectively), limonene (10.0 and 14.7%), borneol (23.4 and 16.6%), p-cymen-8-ol (6.1 and 5.8%), ß-pinene (4.0 and 3.8%), bornyl acetate (3.0 and 5.1%), trans-pinocarveol (4.2 and 3.7%), spathulenol (3.0 and 2.0%), myrtenol (2.5 and 1.7%), and terpinolene (1.7 and 2.0%). Enantiomer analysis showed that α-pinene, ß-pinene, and borneol were present primarily as (-)-enantiomers (100% enantiomeric excess (ee) for (-)-α-pinene and (-)-borneol in both GEOFl and GEOLv; 82 and 78% ee for (-)-ß-pinene in GEOFl and GEOLv), while limonene was present primarily as the (+)-enantiomer (94 and 96 ee in GEOFl and GEOLv). Grindelia essential oils activated human neutrophils, resulting in increased [Ca2+]i (EC50 = 22.3 µg/mL for GEOFl and 19.4 µg/mL for GEOLv). In addition, one of the major enantiomeric components, (-)-borneol, activated human neutrophil [Ca2+]i (EC50 = 28.7 ± 2.6), whereas (+)-borneol was inactive. Since these treatments activated neutrophils, we also evaluated if they were able to down-regulate neutrophil responses to subsequent agonist activation and found that treatment with Grindelia essential oils inhibited activation of these cells by the N-formyl peptide receptor 1 (FPR1) agonist fMLF and the FPR2 agonist WKYMVM. Likewise, (-)-borneol inhibited FPR-agonist-induced Ca2+ influx in neutrophils. Grindelia leaf and flower essential oils, as well as (-)-borneol, also inhibited fMLF-induced chemotaxis of human neutrophils (IC50 = 4.1 ± 0.8 µg/mL, 5.0 ± 1.6 µg/mL, and 5.8 ± 1.4 µM, respectively). Thus, we identified (-)-borneol as a novel modulator of human neutrophil function.


Asunto(s)
Grindelia , Aceites Volátiles , Canfanos , Grindelia/química , Humanos , Limoneno/análisis , Neutrófilos , Aceites Volátiles/química , Hojas de la Planta/química , Aceites de Plantas/química
7.
Molecules ; 27(12)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35744876

RESUMEN

Persistent inflammation contributes to a number of diseases; therefore, control of the inflammatory response is an important therapeutic goal. In an effort to identify novel anti-inflammatory compounds, we screened a library of pyridazinones and structurally related derivatives that were used previously to identify N-formyl peptide receptor (FPR) agonists. Screening of the compounds for their ability to inhibit lipopolysaccharide (LPS)-induced nuclear factor κB (NF-κB) transcriptional activity in human THP1-Blue monocytic cells identified 48 compounds with anti-inflammatory activity. Interestingly, 34 compounds were FPR agonists, whereas 14 inhibitors of LPS-induced NF-κB activity were not FPR agonists, indicating that they inhibited different signaling pathways. Further analysis of the most potent inhibitors showed that they also inhibited LPS-induced production of interleukin 6 (IL-6) by human MonoMac-6 monocytic cells, again verifying their anti-inflammatory properties. Structure-activity relationship (SAR) classification models based on atom pair descriptors and physicochemical ADME parameters were developed to achieve better insight into the relationships between chemical structures of the compounds and their biological activities, and we found that there was little correlation between FPR agonist activity and inhibition of LPS-induced NF-κB activity. Indeed, Cmpd43, a well-known pyrazolone-based FPR agonist, as well as FPR1 and FPR2 peptide agonists had no effect on the LPS-induced NF-κB activity in THP1-Blue cells. Thus, some FPR agonists reported to have anti-inflammatory activity may actually mediate their effects through FPR-independent pathways, as it is suggested by our results with this series of compounds. This could explain how treatment with some agonists known to be inflammatory (i.e., FPR1 agonists) could result in anti-inflammatory effects. Further research is clearly needed to define the molecular targets of pyridazinones and structurally related compounds with anti-inflammatory activity and to define their relationships (if any) to FPR signaling events.


Asunto(s)
Lipopolisacáridos , FN-kappa B , Antiinflamatorios/farmacología , Humanos , Lipopolisacáridos/farmacología , FN-kappa B/metabolismo , Transducción de Señal , Relación Estructura-Actividad
8.
Bioorg Med Chem Lett ; 52: 128380, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34563669

RESUMEN

Human neutrophil elastase (HNE) is a serine protease that is expressed in polymorphonuclear neutrophils. It has been recognized as an important therapeutic target for treating inflammatory diseases, especially related to the respiratory system, but also for various types of cancer. Thus, compounds able to inhibit HNE are of great interest in medicinal chemistry. In the present paper, we report the synthesis and biological evaluation of a new series of HNE inhibitors with an innovative 1,5,6,7-tetrahydro-4H-indazol-4-one core that was developed as a molecular modification of our previously reported indazole-based HNE inhibitors. Since the 1,5,6,7-tetrahydro-4H-indazol-4-one scaffold can occur in two possible tautomeric forms, the acylation/alkylation reactions resulted in a mixture of the two isomers, often widely unbalanced in favor of one form. Using analytical techniques and NMR spectroscopy, we characterized and separated the isomer pairs and confirmed the compounds used in biological testing. Analysis of the compounds for HNE inhibitory activity showed that they were potent inhibitors, with Ki values in the low nanomolar range (6-35 nM). They also had reasonable stability in aqueous buffer, with half-lives over 1 h. Overall, our results indicate that the 1,5,6,7-tetrahydro-4H-indazol-4-one core is suitable for the synthesis of potent HNE inhibitors that could be useful in the development of new therapeutics for treating diseases involving excessive HNE activity.


Asunto(s)
Elastasa de Leucocito/antagonistas & inhibidores , Inhibidores de Serina Proteinasa/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Elastasa de Leucocito/metabolismo , Estructura Molecular , Inhibidores de Serina Proteinasa/síntesis química , Inhibidores de Serina Proteinasa/química , Relación Estructura-Actividad
9.
Bioorg Med Chem ; 29: 115836, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33218895

RESUMEN

Human neutrophil elastase (HNE) is a potent protease that plays an important physiological role in many processes but is also involved in a variety of pathologies that affect the pulmonary system. Thus, compounds able to inhibit HNE proteolytic activity could represent effective therapeutics. We present here a new series of pyrazolopyridine and pyrrolopyridine derivatives as HNE inhibitors designed as modifications of our previously synthesized indazoles and indoles in order to evaluate effects of the change in position of the nitrogen and/or the insertion of an additional nitrogen in the scaffolds on biological activity and chemical stability. We obtained potent HNE inhibitors with IC50 values in the low nanomolar range (10-50 nM), and some compounds exhibited improved chemical stability in phosphate buffer (t1/2 > 6 h). Molecular modeling studies demonstrated that inhibitory activity was strictly dependent on the formation of a Michaelis complex between the OH group of HNE Ser195 and the carbonyl carbon of the inhibitor. Moreover, in silico ADMET calculations predicted that most of the new compounds would be optimally absorbed, distributed, metabolized, and excreted. Thus, these new and potent HNE inhibitors represent novel leads for future therapeutic development.


Asunto(s)
Desarrollo de Medicamentos , Compuestos Heterocíclicos/farmacología , Elastasa de Leucocito/antagonistas & inhibidores , Piridinas/farmacología , Pirroles/farmacología , Inhibidores de Serina Proteinasa/farmacología , Teoría Funcional de la Densidad , Relación Dosis-Respuesta a Droga , Compuestos Heterocíclicos/síntesis química , Compuestos Heterocíclicos/química , Humanos , Elastasa de Leucocito/metabolismo , Modelos Moleculares , Estructura Molecular , Piridinas/síntesis química , Piridinas/química , Pirroles/síntesis química , Pirroles/química , Inhibidores de Serina Proteinasa/síntesis química , Inhibidores de Serina Proteinasa/química , Relación Estructura-Actividad
10.
Molecules ; 26(12)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203809

RESUMEN

Rhododendron (Ericaceae) extracts contain flavonoids, chromones, terpenoids, steroids, and essential oils and are used in traditional ethnobotanical medicine. However, little is known about the immunomodulatory activity of essential oils isolated from these plants. Thus, we isolated essential oils from the flowers and leaves of R. albiflorum (cascade azalea) and analyzed their chemical composition and innate immunomodulatory activity. Compositional analysis of flower (REOFl) versus leaf (REOLv) essential oils revealed significant differences. REOFl was comprised mainly of monoterpenes (92%), whereas sesquiterpenes were found in relatively low amounts. In contrast, REOLv was primarily composed of sesquiterpenes (90.9%), with a small number of monoterpenes. REOLv and its primary sesquiterpenes (viridiflorol, spathulenol, curzerene, and germacrone) induced intracellular Ca2+ mobilization in human neutrophils, C20 microglial cells, and HL60 cells transfected with N-formyl peptide receptor 1 (FPR1) or FPR2. On the other hand, pretreatment with these essential oils or component compounds inhibited agonist-induced Ca2+ mobilization and chemotaxis in human neutrophils and agonist-induced Ca2+ mobilization in microglial cells and FPR-transfected HL60 cells, indicating that the direct effect of these compounds on [Ca2+]i desensitized the cells to subsequent agonist activation. Reverse pharmacophore mapping suggested several potential kinase targets for these compounds; however, these targets were not supported by kinase binding assays. Our results provide a cellular and molecular basis to explain at least part of the beneficial immunotherapeutic properties of the R. albiflorum essential oils and suggest that essential oils from leaves of this plant may be effective in modulating some innate immune responses, possibly by inhibition of neutrophil migration.


Asunto(s)
Aceites Volátiles/química , Rhododendron/química , Flores/química , Células HL-60 , Humanos , Factores Inmunológicos/aislamiento & purificación , Factores Inmunológicos/metabolismo , Inmunomodulación/efectos de los fármacos , Monoterpenos/farmacología , Neutrófilos/efectos de los fármacos , Aceites Volátiles/farmacología , Hojas de la Planta/química , Receptores de Formil Péptido/efectos de los fármacos , Receptores de Formil Péptido/metabolismo , Rhododendron/metabolismo , Sesquiterpenos/farmacología
11.
Molecules ; 26(21)2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34770992

RESUMEN

Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by joint inflammation, cartilage damage and bone destruction. Although the pharmacological treatment of RA has evolved over the last few years, the new drugs have serious side effects and are very expensive. Thus, the research has been directed in recent years towards new possible targets. Among these targets, N-formyl peptide receptors (FPRs) are of particular interest. Recently, the mixed FPR1/FPR2 agonist Cpd43, the FPR2 agonist AT-01-KG, and the pyridine derivative AMC3 have been shown to be effective in RA animal models. As an extension of this research, we report here a new series of pyridinone derivatives containing the (substituted)phenyl acetamide chain, which was found to be essential for activity, but with different substitutions at position 5 of the scaffold. The biological results were also supported by molecular modeling studies and additional pharmacological tests on AMC3 have been performed in a rat model of RA, by repeating the treatments of the animals with 10 mg/kg/day of compound by 1 week.


Asunto(s)
Artritis Reumatoide/tratamiento farmacológico , Piridinas/farmacología , Receptores de Formil Péptido/agonistas , Administración Oral , Animales , Artritis Reumatoide/inducido químicamente , Artritis Reumatoide/metabolismo , Adyuvante de Freund , Humanos , Masculino , Estructura Molecular , Piridinas/administración & dosificación , Piridinas/química , Ratas , Ratas Sprague-Dawley , Células Tumorales Cultivadas
12.
Molecules ; 26(24)2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34946725

RESUMEN

Little is known about the immunomodulatory activity of essential oils isolated from Juniperus species. Thus, we isolated essential oils from the cones and leaves of eight juniper species found in Montana and in Kazakhstan, including J. horizontalis, J. scopolorum, J. communis, J. seravschanica, J. sabina, J. pseudosabina, J. pseudosabina subsp. turkestanica, and J. sibirica. We report here the chemical composition and innate immunomodulatory activity of these essential oils. Compositional analysis of the 16 samples of Juniper essential oils revealed similarities and differences between our analyses and those previously reported for essential oils from this species. Our studies represent the first analysis of essential oils isolated from the cones of four of these Juniper species. Several essential oil samples contained high levels of cedrol, which was fairly unique to three Juniper species from Kazakhstan. We found that these essential oils and pure (+)-cedrol induced intracellular Ca2+ mobilization in human neutrophils. Furthermore, pretreatment of human neutrophils and N-formyl peptide receptor 1 and 2 (FPR1 and FPR2) transfected HL60 cells with these essential oils or (+)-cedrol inhibited agonist-induced Ca2+ mobilization, suggesting these responses were desensitized by this pretreatment. In support of this conclusion, pretreatment with essential oils from J. seravschanica cones (containing 16.8% cedrol) or pure (+)-cedrol inhibited human neutrophil chemotaxis to N-formyl peptide. Finally, reverse pharmacophore mapping predicted several potential kinase targets for cedrol. Thus, our studies have identified cedrol as a novel neutrophil agonist that can desensitize cells to subsequent stimulation by N-formyl peptide.


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Factores Inmunológicos , Juniperus/química , Neutrófilos/inmunología , Aceites Volátiles/química , Sesquiterpenos Policíclicos , Células HL-60 , Humanos , Factores Inmunológicos/química , Factores Inmunológicos/farmacología , Juniperus/clasificación , Sesquiterpenos Policíclicos/química , Sesquiterpenos Policíclicos/farmacología
13.
Molecules ; 26(18)2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34577159

RESUMEN

c-Jun N-terminal kinase (JNK) plays a central role in stress signaling pathways implicated in important pathological processes, including rheumatoid arthritis and ischemia-reperfusion injury. Therefore, inhibition of JNK is of interest for molecular targeted therapy to treat various diseases. We synthesized 13 derivatives of our reported JNK inhibitor 11H-indeno[1,2-b]quinoxalin-11-one oxime and evaluated their binding to the three JNK isoforms and their biological effects. Eight compounds exhibited submicromolar binding affinity for at least one JNK isoform. Most of these compounds also inhibited lipopolysaccharide (LPS)-induced nuclear factor-κB/activating protein 1 (NF-κB/AP-1) activation and interleukin-6 (IL-6) production in human monocytic THP1-Blue cells and human MonoMac-6 cells, respectively. Selected compounds (4f and 4m) also inhibited LPS-induced c-Jun phosphorylation in MonoMac-6 cells, directly confirming JNK inhibition. We conclude that indenoquinoxaline-based oximes can serve as specific small-molecule modulators for mechanistic studies of JNKs, as well as potential leads for the development of anti-inflammatory drugs.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Oximas/química , Oximas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Antiinflamatorios/química , Antiinflamatorios/farmacología , Disponibilidad Biológica , Línea Celular , Humanos , Interleucina-6/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Lipopolisacáridos/toxicidad , Monocitos/efectos de los fármacos , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Quinoxalinas/química , Quinoxalinas/farmacología
14.
Molecules ; 26(8)2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33921479

RESUMEN

Synthetic and natural ionophores have been developed to catalyze ion transport and have been shown to exhibit a variety of biological effects. We synthesized 24 aza- and diaza-crown ethers containing adamantyl, adamantylalkyl, aminomethylbenzoyl, and ε-aminocaproyl substituents and analyzed their biological effects in vitro. Ten of the compounds (8, 10-17, and 21) increased intracellular calcium ([Ca2+]i) in human neutrophils, with the most potent being compound 15 (N,N'-bis[2-(1-adamantyl)acetyl]-4,10-diaza-15-crown-5), suggesting that these compounds could alter normal neutrophil [Ca2+]i flux. Indeed, a number of these compounds (i.e., 8, 10-17, and 21) inhibited [Ca2+]i flux in human neutrophils activated by N-formyl peptide (fMLF). Some of these compounds also inhibited chemotactic peptide-induced [Ca2+]i flux in HL60 cells transfected with N-formyl peptide receptor 1 or 2 (FPR1 or FPR2). In addition, several of the active compounds inhibited neutrophil reactive oxygen species production induced by phorbol 12-myristate 13-acetate (PMA) and neutrophil chemotaxis toward fMLF, as both of these processes are highly dependent on regulated [Ca2+]i flux. Quantum chemical calculations were performed on five structure-related diaza-crown ethers and their complexes with Ca2+, Na+, and K+ to obtain a set of molecular electronic properties and to correlate these properties with biological activity. According to density-functional theory (DFT) modeling, Ca2+ ions were more effectively bound by these compounds versus Na+ and K+. The DFT-optimized structures of the ligand-Ca2+ complexes and quantitative structure-activity relationship (QSAR) analysis showed that the carbonyl oxygen atoms of the N,N'-diacylated diaza-crown ethers participated in cation binding and could play an important role in Ca2+ transfer. Thus, our modeling experiments provide a molecular basis to explain at least part of the ionophore mechanism of biological action of aza-crown ethers.


Asunto(s)
Compuestos Aza/síntesis química , Compuestos Aza/farmacología , Éteres Corona/síntesis química , Éteres Corona/farmacología , Modelos Moleculares , Calcio/metabolismo , Quimiotaxis/efectos de los fármacos , Teoría Funcional de la Densidad , Células HL-60 , Humanos , Ligandos , Neutrófilos/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Receptores de Formil Péptido/metabolismo , Análisis de Regresión , Electricidad Estática , Termodinámica
15.
Bioorg Chem ; 100: 103880, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32388428

RESUMEN

The resolution of inflammation is an active response involving the interaction of pro-resolving mediators with specific receptors, such as N-formyl peptide receptor 2 (FPR2). FPRs represent potentially important therapeutic targets for the treatment of some pathologies, including asthma and rheumatoid arthritis. Previously, we identified selective or mixed FPR agonists with a pyridazin-3(2H)-one scaffold, all containing a 4-bromophenylacetamide fragment at N-2. The most effective compounds in this series were EC3, a potent mixed FPR1/FPR2/FPR3 agonist, and EC10, which had a preference for FPR1. We report here a new series of pyridinone and pyrimidindione derivatives containing the 4-(bromophenyl)acetamide substituent that was essential for activity in the pyridazinone series. All new compounds were evaluated for FPR agonist activity in HL60 cells transfected with FPR1 or FPR2 and in human neutrophils. While most of the pyridinone derivatives had reasonable FPR agonist activity in the submicromolar/micromolar range, the pyrimidindione derivatives were less active. Compound 2a (N-(4-bromophenyl)-2-[3-cyano-5-(3-methoxyphenyl)-6-methyl-2-oxopyridin-1(2H)-yl]acetamide) was the most active pyridinone derivative and had a 10-fold preference for FPR2 (EC50 = 120 nM) versus FPR1 (EC50 = 1.6 µM). To assess their therapeutic activity, compounds 2a, EC3, and EC10 were evaluated in vivo using a rat model of rheumatoid arthritis. All three compounds increased the pain threshold and reduced pain hypersensitivity in the treated rats versus control rats, although 2a and EC10 were much more effective than EC3. Thus, these FPR agonists represent potential leads to develop for the treatment of inflammatory diseases such as rheumatoid arthritis.


Asunto(s)
Piridonas/química , Piridonas/farmacología , Pirimidinonas/química , Pirimidinonas/farmacología , Receptores de Formil Péptido/agonistas , Animales , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Línea Celular Tumoral , Células Cultivadas , Diseño de Fármacos , Humanos , Masculino , Piridonas/uso terapéutico , Pirimidinonas/uso terapéutico , Ratas Sprague-Dawley , Receptores de Formil Péptido/metabolismo
16.
Drug Dev Res ; 81(3): 338-349, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31800122

RESUMEN

Human neutrophil elastase (HNE) is a proteolytic enzyme belonging to the serine protease family and is involved in a variety of pathologies. Thus, compounds able to inhibit HNE represent promising therapeutics for the treatment of inflammatory diseases. Here, we report the further elaboration of our previously reported 3-methylisoxazolone derivatives, synthesizing a new series of 3-nor-derivatives bearing different substituents at the 4-phenyl ring. The most potent compounds 3a, 3g, and 3h, had IC50 values of 16, 11, and 18 nM, respectively. Molecular modeling studies and molecular dynamic (MD) simulations demonstrated no substantial differences between the 3-methylisoxazole derivatives previously tested and the corresponding 3-unsubstituted derivatives in the snapshot conformations sampled during the MD simulations, which is consistent with their similar levels of HNE inhibitory activity. Thus, we conclude that the isoxazolone scaffold is a good scaffold for developing HNE inhibitors, as it tolerates several modifications when adhering to basic scaffold requirements, and the resulting derivatives are quite potent HNE inhibitors.


Asunto(s)
Isoxazoles/farmacología , Elastasa de Leucocito/antagonistas & inhibidores , Proteínas Inhibidoras de Proteinasas Secretoras/farmacología , Humanos , Concentración 50 Inhibidora , Isoxazoles/síntesis química , Isoxazoles/química , Modelos Moleculares , Simulación de Dinámica Molecular , Proteínas Inhibidoras de Proteinasas Secretoras/síntesis química , Proteínas Inhibidoras de Proteinasas Secretoras/química , Relación Estructura-Actividad
17.
Molecules ; 25(21)2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33105614

RESUMEN

Little is known about the pharmacological activity of Monarda fistulosa L. essential oils. To address this issue, we isolated essential oils from the flowers and leaves of M. fistulosa and analyzed their chemical composition. We also analyzed the pharmacological effects of M. fistulosa essential oils on transient receptor potential (TRP) channel activity, as these channels are known targets of various essential oil constituents. Flower (MEOFl) and leaf (MEOLv) essential oils were comprised mainly of monoterpenes (43.1% and 21.1%) and oxygenated monoterpenes (54.8% and 77.7%), respectively, with a high abundance of monoterpene hydrocarbons, including p-cymene, γ-terpinene, α-terpinene, and α-thujene. Major oxygenated monoterpenes of MEOFl and MEOLv included carvacrol and thymol. Both MEOFl and MEOLv stimulated a transient increase in intracellular free Ca2+ concentration ([Ca2+]i) in TRPA1 but not in TRPV1 or TRPV4-transfected cells, with MEOLv being much more effective than MEOFl. Furthermore, the pure monoterpenes carvacrol, thymol, and ß-myrcene activated TRPA1 but not the TRPV1 or TRPV4 channels, suggesting that these compounds represented the TRPA1-activating components of M. fistulosa essential oils. The transient increase in [Ca2+]i induced by MEOFl/MEOLv, carvacrol, ß-myrcene, and thymol in TRPA1-transfected cells was blocked by a selective TRPA1 antagonist, HC-030031. Although carvacrol and thymol have been reported previously to activate the TRPA1 channels, this is the first report to show that ß-myrcene is also a TRPA1 channel agonist. Finally, molecular modeling studies showed a substantial similarity between the docking poses of carvacrol, thymol, and ß-myrcene in the binding site of human TRPA1. Thus, our results provide a cellular and molecular basis to explain at least part of the therapeutic properties of these essential oils, laying the foundation for prospective pharmacological studies involving TRP ion channels.


Asunto(s)
Flores/química , Monarda/química , Monoterpenos/química , Aceites Volátiles/química , Aceites Volátiles/metabolismo , Hojas de la Planta/química , Canal Catiónico TRPA1/metabolismo , Calcio/metabolismo , Monoterpenos Ciclohexánicos/química , Cimenos/química , Cromatografía de Gases y Espectrometría de Masas , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , Estructuras de las Plantas/química , Timol/química
18.
Drug Dev Res ; 80(5): 617-628, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31002441

RESUMEN

Human neutrophil elastase (HNE) is a potent protease that plays an important physiological role in many processes and is considered to be a multifunctional enzyme. HNE is also involved in a variety of pathologies affecting the respiratory system. Thus, compounds able to inhibit HNE proteolytic activity could represent effective therapeutics. We present here a new series of pyrrolo[2,3-b]pyridine derivatives of our previously reported potent HNE inhibitors. Our results show that position 2 of the pyrrolo[2,3-b]pyridine scaffold must be unsubstituted, and modifications of this position resulted in loss of HNE inhibitory activity. Conversely, the introduction of certain substituents at position 5 was tolerated, with retention of HNE inhibitory activity (IC50 = 15-51 nM) after most substitutions, indicating that bulky and/or lipophilic substituents at position 5 probably interact with the large pocket of the enzyme site and allow Michaelis complex formation. The possibility of Michaelis complex formation between Ser195 and the ligand carbonyl group was assessed by molecular docking, and it was found that highly active HNE inhibitors are characterized by geometries favorable for Michaelis complex formation and by relatively short lengths of the proton transfer channel via the catalytic triad.


Asunto(s)
Inhibidores Enzimáticos/síntesis química , Elastasa de Leucocito/antagonistas & inhibidores , Piridinas/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Elastasa de Leucocito/química , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Piridinas/química , Piridinas/farmacología , Relación Estructura-Actividad
19.
Molecules ; 24(9)2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-31083328

RESUMEN

Organosulfur compounds are bioactive components of garlic essential oil (EO), mustard oil, Ferula EOs, asafoetida, and other plant and food extracts. Traditionally, garlic (Allium sativum) is used to boost the immune system; however, the mechanisms involved in the putative immunomodulatory effects of garlic are unknown. We investigated the effects of garlic EO and 22 organosulfur compounds on human neutrophil responses. Garlic EO, allyl propyl disulfide, dipropyl disulfide, diallyl disulfide, and allyl isothiocyanate (AITC) directly activated Ca2+ flux in neutrophils, with the most potent being AITC. Although 1,3-dithiane did not activate neutrophil Ca2+ flux, this minor constituent of garlic EO stimulated neutrophil reactive oxygen species (ROS) production. In contrast, a close analog (1,4-dithiane) was unable to activate neutrophil ROS production. Although 1,3-dithiane-1-oxide also stimulated neutrophil ROS production, only traces of this oxidation product were generated after a 5 h treatment of HL60 cells with 1,3-dithiane. Evaluation of several phosphatidylinositol-3 kinase (PI3K) inhibitors with different subtype specificities (A-66, TGX 221, AS605240, and PI 3065) showed that the PI3K p110δ inhibitor PI 3065 was the most potent inhibitor of 1,3-dithiane-induced neutrophil ROS production. Furthermore, 1,3-dithiane enhanced the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), glycogen synthase kinase 3 α/ß (GSK-3α/ß), and cAMP response element binding (CREB) protein in differentiated neutrophil-like HL60 cells. Density functional theory (DFT) calculations confirmed the reactivity of 1,3-dithiane vs. 1,4-dithiane, based on the frontier molecular orbital analysis. Our results demonstrate that certain organosulfur compounds can activate neutrophil functional activity and may serve as biological response modifiers by augmenting phagocyte functions.


Asunto(s)
Factores Inmunológicos/farmacología , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Compuestos Orgánicos/farmacología , Compuestos de Azufre/farmacología , Compuestos Alílicos/farmacología , Antioxidantes/metabolismo , Disulfuros/farmacología , Ajo/química , Células HL-60 , Compuestos Heterocíclicos/farmacología , Humanos , Proteínas Quinasas Activadas por Mitógenos , Neutrófilos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación/efectos de los fármacos , Quinoxalinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Sulfuros/farmacología , Tiazolidinedionas/farmacología
20.
Molecules ; 24(2)2019 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-30669433

RESUMEN

A variety of natural compounds have been shown to modulate T cell receptor (TCR) activation, including natural sesquiterpene lactones (SLs). In the present studies, we evaluated the biological activity of 11 novel semi-synthetic SLs to determine their ability to modulate TCR activation. Of these compounds, α -epoxyarglabin, cytisinyl epoxyarglabin, 1 ß ,10 α -epoxyargolide, and chloroacetate grosheimin inhibited anti-CD3-induced Ca2+ mobilization and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in Jurkat T cells. We also found that the active SLs depleted intracellular glutathione (GSH) in Jurkat T cells, supporting their reactivity towards thiol groups. Because the zeta-chain associated tyrosine kinase 70 kDa (ZAP-70) is essential for TCR signaling and contains a tandem SH2 region that is highly enriched with multiple cysteines, we performed molecular docking of natural SLs and their semi-synthetic derivatives into the ZAP-70 binding site. The docking showed that the distance between the carbon atom of the exocyclic methylene group and the sulfur atom in Cys39 of the ZAP-70 tandem SH2 module was 3.04⁻5.3 Å for active compounds. Furthermore, the natural SLs and their derivatives could be differentiated by their ability to react with the Cys39 SH-group. We suggest that natural and/or semi-synthetic SLs with an α -methylene- γ -lactone moiety can specifically target GSH and the kinase site of ZAP-70 and inhibit the initial phases of TCR activation.


Asunto(s)
Glutatión/metabolismo , Lactonas/metabolismo , Receptores de Antígenos de Linfocitos T/antagonistas & inhibidores , Sesquiterpenos/metabolismo , Proteína Tirosina Quinasa ZAP-70/metabolismo , Comunicación Celular , Humanos , Células Jurkat , Lactonas/síntesis química , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Simulación del Acoplamiento Molecular , Estructura Molecular , Fosforilación/efectos de los fármacos , Unión Proteica , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/metabolismo , Sesquiterpenos/síntesis química , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA