Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 568(7752): 351-356, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30971818

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is a common syndrome with high morbidity and mortality for which there are no evidence-based therapies. Here we report that concomitant metabolic and hypertensive stress in mice-elicited by a combination of high-fat diet and inhibition of constitutive nitric oxide synthase using Nω-nitro-L-arginine methyl ester (L-NAME)-recapitulates the numerous systemic and cardiovascular features of HFpEF in humans. Expression of one of the unfolded protein response effectors, the spliced form of X-box-binding protein 1 (XBP1s), was reduced in the myocardium of our rodent model and in humans with HFpEF. Mechanistically, the decrease in XBP1s resulted from increased activity of inducible nitric oxide synthase (iNOS) and S-nitrosylation of the endonuclease inositol-requiring protein 1α (IRE1α), culminating in defective XBP1 splicing. Pharmacological or genetic suppression of iNOS, or cardiomyocyte-restricted overexpression of XBP1s, each ameliorated the HFpEF phenotype. We report that iNOS-driven dysregulation of the IRE1α-XBP1 pathway is a crucial mechanism of cardiomyocyte dysfunction in HFpEF.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Estrés Nitrosativo , Volumen Sistólico , Animales , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Endorribonucleasas/metabolismo , Insuficiencia Cardíaca/prevención & control , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/deficiencia , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fenotipo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/metabolismo
2.
Eur J Clin Invest ; 54(8): e14199, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38530070

RESUMEN

BACKGROUND: Defects of mitophagy, the selective form of autophagy for mitochondria, are commonly observed in several cardiovascular diseases and represent the main cause of mitochondrial dysfunction. For this reason, mitophagy has emerged as a novel and potential therapeutic target. METHODS: In this review, we discuss current evidence about the biological significance of mitophagy in relevant preclinical models of cardiac and vascular diseases, such as heart failure, ischemia/reperfusion injury, metabolic cardiomyopathy and atherosclerosis. RESULTS: Multiple studies have shown that cardiac and vascular mitophagy is an adaptive mechanism in response to stress, contributing to cardiovascular homeostasis. Mitophagy defects lead to cell death, ultimately impairing cardiac and vascular function, whereas restoration of mitophagy by specific compounds delays disease progression. CONCLUSIONS: Despite previous efforts, the molecular mechanisms underlying mitophagy activation in response to stress are not fully characterized. A comprehensive understanding of different forms of mitophagy active in the cardiovascular system is extremely important for the development of new drugs targeting this process. Human studies evaluating mitophagy abnormalities in patients at high cardiovascular risk also represent a future challenge.


Asunto(s)
Enfermedades Cardiovasculares , Mitofagia , Humanos , Mitofagia/fisiología , Aterosclerosis , Insuficiencia Cardíaca/fisiopatología , Animales , Daño por Reperfusión Miocárdica , Cardiomiopatías/fisiopatología , Mitocondrias Cardíacas/metabolismo
3.
Curr Opin Cardiol ; 39(3): 148-153, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38294187

RESUMEN

PURPOSE OF REVIEW: Incretin-based drugs are potent weight-lowering agents, emerging as potential breakthrough therapy for the treatment of obesity-related phenotype of heart failure with preserved ejection fraction (HFpEF). In this review article, we will discuss the contribution of weight loss as part of the benefits of incretin-based medications in obese patients with HFpEF. Furthermore, we will describe the potential effects of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptor agonists on the heart, particularly in relation to HFpEF pathophysiology. RECENT FINDINGS: In the STEP-HFpEF trial, the GLP-1 receptor agonist semaglutide significantly improved quality of life outcomes in obese HFpEF patients. Whether the beneficial effects of semaglutide in obese patients with HFpEF are merely a consequence of body weight reduction is unclear. Considering the availability of other weight loss strategies (e.g., caloric restriction, exercise training, bariatric surgery) to be used in obese HFpEF patients, answering this question is crucial to provide tailored therapeutic options in these subjects. SUMMARY: Incretin-based drugs may represent a milestone in the treatment of obesity in HFpEF. Elucidating the contribution of weight loss in the overall benefit observed with these drugs is critical in the management of obese HFpEF patients, considering that other weight-lowering strategies are available and might represent potential alternative options for these patients.


Asunto(s)
Diabetes Mellitus Tipo 2 , Insuficiencia Cardíaca , Humanos , Incretinas/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico , Calidad de Vida , Volumen Sistólico/fisiología , Pérdida de Peso/fisiología , Péptido 1 Similar al Glucagón/farmacología , Péptido 1 Similar al Glucagón/uso terapéutico , Obesidad/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico
4.
Nature ; 558(7708): 136-140, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29849149

RESUMEN

Autophagy increases the lifespan of model organisms; however, its role in promoting mammalian longevity is less well-established1,2. Here we report lifespan and healthspan extension in a mouse model with increased basal autophagy. To determine the effects of constitutively increased autophagy on mammalian health, we generated targeted mutant mice with a Phe121Ala mutation in beclin 1 (Becn1F121A/F121A) that decreases its interaction with the negative regulator BCL2. We demonstrate that the interaction between beclin 1 and BCL2 is disrupted in several tissues in Becn1 F121A/F121A knock-in mice in association with higher levels of basal autophagic flux. Compared to wild-type littermates, the lifespan of both male and female knock-in mice is significantly increased. The healthspan of the knock-in mice also improves, as phenotypes such as age-related renal and cardiac pathological changes and spontaneous tumorigenesis are diminished. Moreover, mice deficient in the anti-ageing protein klotho 3 have increased beclin 1 and BCL2 interaction and decreased autophagy. These phenotypes, along with premature lethality and infertility, are rescued by the beclin 1(F121A) mutation. Together, our data demonstrate that disruption of the beclin 1-BCL2 complex is an effective mechanism to increase autophagy, prevent premature ageing, improve healthspan and promote longevity in mammals.


Asunto(s)
Envejecimiento/fisiología , Autofagia/fisiología , Beclina-1/metabolismo , Longevidad/fisiología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Envejecimiento/genética , Animales , Autofagosomas/metabolismo , Beclina-1/genética , Células Cultivadas , Femenino , Fibroblastos/citología , Técnicas de Sustitución del Gen , Glucuronidasa/deficiencia , Glucuronidasa/genética , Células HeLa , Salud , Humanos , Proteínas Klotho , Longevidad/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación
5.
Nature ; 561(7723): E30, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29921925

RESUMEN

In this Letter, the graphs in Fig. 2a and c were inadvertently the same owing to a copy and paste error from the original graphs in Prism. The Source Data files containing the raw data were correct. Fig. 2c has been corrected online.

8.
Circulation ; 144(1): 34-51, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-33821668

RESUMEN

BACKGROUND: Cardiac hypertrophy is an independent risk factor for heart failure, a leading cause of morbidity and mortality globally. The calcineurin/NFAT (nuclear factor of activated T cells) pathway and the MAPK (mitogen-activated protein kinase)/Erk (extracellular signal-regulated kinase) pathway contribute to the pathogenesis of cardiac hypertrophy as an interdependent network of signaling cascades. How these pathways interact remains unclear and few direct targets responsible for the prohypertrophic role of NFAT have been described. METHODS: By engineering cardiomyocyte-specific ETS2 (a member of the E26 transformation-specific sequence [ETS] domain family) knockout mice, we investigated the role of ETS2 in cardiac hypertrophy. Primary cardiomyocytes were used to evaluate ETS2 function in cell growth. RESULTS: ETS2 is phosphorylated and activated by Erk1/2 on hypertrophic stimulation in both mouse (n=3) and human heart samples (n=8 to 19). Conditional deletion of ETS2 in mouse cardiomyocytes protects against pressure overload-induced cardiac hypertrophy (n=6 to 11). Silencing of ETS2 in the hearts of calcineurin transgenic mice significantly attenuates hypertrophic growth and contractile dysfunction (n=8). As a transcription factor, ETS2 is capable of binding to the promoters of hypertrophic marker genes, such as ANP, BNP, and Rcan1.4 (n=4). We report that ETS2 forms a complex with NFAT to stimulate transcriptional activity through increased NFAT binding to the promoters of at least 2 hypertrophy-stimulated genes: Rcan1.4 and microRNA-223 (=n4 to 6). Suppression of microRNA-223 in cardiomyocytes inhibits calcineurin-mediated cardiac hypertrophy (n=6), revealing microRNA-223 as a novel prohypertrophic target of the calcineurin/NFAT and Erk1/2-ETS2 pathways. CONCLUSIONS: Our findings point to a critical role for ETS2 in calcineurin/NFAT pathway-driven cardiac hypertrophy and unveil a previously unknown molecular connection between the Erk1/2 activation of ETS2 and expression of NFAT/ETS2 target genes.


Asunto(s)
Calcineurina/metabolismo , Cardiomegalia/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Factores de Transcripción NFATC/metabolismo , Proteína Proto-Oncogénica c-ets-2/metabolismo , Animales , Calcineurina/genética , Cardiomegalia/genética , Cardiomegalia/patología , Células Cultivadas , Células HEK293 , Humanos , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Factores de Transcripción NFATC/genética , Unión Proteica/fisiología , Proteína Proto-Oncogénica c-ets-2/genética , Ratas , Ratas Sprague-Dawley
9.
Eur Heart J ; 42(43): 4420-4430, 2021 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-34414416

RESUMEN

Heart failure (HF) with preserved ejection fraction (HFpEF) is a multifactorial disease accounting for a large and increasing proportion of all clinical HF presentations. As a clinical syndrome, HFpEF is characterized by typical signs and symptoms of HF, a distinct cardiac phenotype and raised natriuretic peptides. Non-cardiac comorbidities frequently co-exist and contribute to the pathophysiology of HFpEF. To date, no therapy has proven to improve outcomes in HFpEF, with drug development hampered, at least partly, by lack of consensus on appropriate standards for pre-clinical HFpEF models. Recently, two clinical algorithms (HFA-PEFF and H2FPEF scores) have been developed to improve and standardize the diagnosis of HFpEF. In this review, we evaluate the translational utility of HFpEF mouse models in the context of these HFpEF scores. We systematically recorded evidence of symptoms and signs of HF or clinical HFpEF features and included several cardiac and extra-cardiac parameters as well as age and sex for each HFpEF mouse model. We found that most of the pre-clinical HFpEF models do not meet the HFpEF clinical criteria, although some multifactorial models resemble human HFpEF to a reasonable extent. We therefore conclude that to optimize the translational value of mouse models to human HFpEF, a novel approach for the development of pre-clinical HFpEF models is needed, taking into account the complex HFpEF pathophysiology in humans.


Asunto(s)
Insuficiencia Cardíaca , Algoritmos , Animales , Consenso , Humanos , Ratones , Péptidos Natriuréticos , Volumen Sistólico
10.
Circulation ; 142(24): 2356-2370, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33113340

RESUMEN

BACKGROUND: BET (bromodomain and extraterminal) epigenetic reader proteins, in particular BRD4 (bromodomain-containing protein 4), have emerged as potential therapeutic targets in a number of pathological conditions, including cancer and cardiovascular disease. Small-molecule BET protein inhibitors such as JQ1 have demonstrated efficacy in reversing cardiac hypertrophy and heart failure in preclinical models. Yet, genetic studies elucidating the biology of BET proteins in the heart have not been conducted to validate pharmacological findings and to unveil potential pharmacological side effects. METHODS: By engineering a cardiomyocyte-specific BRD4 knockout mouse, we investigated the role of BRD4 in cardiac pathophysiology. We performed functional, transcriptomic, and mitochondrial analyses to evaluate BRD4 function in developing and mature hearts. RESULTS: Unlike pharmacological inhibition, loss of BRD4 protein triggered progressive declines in myocardial function, culminating in dilated cardiomyopathy. Transcriptome analysis of BRD4 knockout mouse heart tissue identified early and specific disruption of genes essential to mitochondrial energy production and homeostasis. Functional analysis of isolated mitochondria from these hearts confirmed that BRD4 ablation triggered significant changes in mitochondrial electron transport chain protein expression and activity. Computational analysis identified candidate transcription factors participating in the BRD4-regulated transcriptome. In particular, estrogen-related receptor α, a key nuclear receptor in metabolic gene regulation, was enriched in promoters of BRD4-regulated mitochondrial genes. CONCLUSIONS: In aggregate, we describe a previously unrecognized role for BRD4 in regulating cardiomyocyte mitochondrial homeostasis, observing that its function is indispensable to the maintenance of normal cardiac function.


Asunto(s)
Cardiomiopatía Dilatada/metabolismo , Núcleo Celular/metabolismo , Metabolismo Energético , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma , Disfunción Ventricular Izquierda/metabolismo , Función Ventricular Izquierda , Animales , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Cardiomiopatía Dilatada/fisiopatología , Núcleo Celular/genética , Núcleo Celular/patología , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Metabolismo Energético/genética , Epigénesis Genética , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Perfilación de la Expresión Génica , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Ratones Noqueados , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/patología , Miocitos Cardíacos/patología , Proteínas Nucleares/genética , Factores de Transcripción/genética , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/patología , Disfunción Ventricular Izquierda/fisiopatología , Función Ventricular Izquierda/genética
11.
Heart Fail Rev ; 26(6): 1333-1344, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-32219614

RESUMEN

Inflammation has long been known to play a role in heart failure (HF). Earlier studies demonstrated that inflammation contributes to the pathogenesis of HF with reduced ejection fraction (HFrEF), and the knowledge about molecules and cell types specifically involved in inflammatory events has been constantly increased ever since. However, conflicting results of several trials with anti-inflammatory treatments led to the conclusions that inflammation does participate in the progression of HFrEF, but more likely it is not the primary event. Conversely, it has been suggested that inflammation drives the development of HF with preserved ejection fraction (HFpEF). Recently the pharmacological blockade of interleukin-1 has been shown to prevent HF hospitalization and mortality in patients with prior myocardial infarction, lending renewed support to the hypothesis that inflammation is a promising therapeutic target in HF. Inflammation has also been proposed to underlie both HF and commonly associated conditions, such as chronic kidney disease or cancer. Within this last paradigm, an emergent role has been ascribed to clonal hematopoiesis of indeterminate potential. Here, we summarize the recent evidence about the role of inflammation in HF, highlighting the similarities and differences in HFrEF vs. HFpEF, and discuss the diagnostic and therapeutic opportunities raised by antinflammatory-based approaches.


Asunto(s)
Insuficiencia Cardíaca , Disfunción Ventricular Izquierda , Humanos , Inflamación , Pronóstico , Volumen Sistólico , Función Ventricular Izquierda
13.
Int J Mol Sci ; 22(11)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34073033

RESUMEN

Atrial fibrillation (AF) is the most common sustained (atrial) arrhythmia, a considerable global health burden and often associated with heart failure. Perturbations of redox signalling in cardiomyocytes provide a cellular substrate for the manifestation and maintenance of atrial arrhythmias. Several clinical trials have shown that treatment with sodium-glucose linked transporter inhibitors (SGLTi) improves mortality and hospitalisation in heart failure patients independent of the presence of diabetes. Post hoc analysis of the DECLARE-TIMI 58 trial showed a 19% reduction in AF in patients with diabetes mellitus (hazard ratio, 0.81 (95% confidence interval: 0.68-0.95), n = 17.160) upon treatment with SGLTi, regardless of pre-existing AF or heart failure and independent from blood pressure or renal function. Accordingly, ongoing experimental work suggests that SGLTi not only positively impact heart failure but also counteract cellular ROS production in cardiomyocytes, thereby potentially altering atrial remodelling and reducing AF burden. In this article, we review recent studies investigating the effect of SGLTi on cellular processes closely interlinked with redox balance and their potential effects on the onset and progression of AF. Despite promising insight into SGLTi effect on Ca2+ cycling, Na+ balance, inflammatory and fibrotic signalling, mitochondrial function and energy balance and their potential effect on AF, the data are not yet conclusive and the importance of individual pathways for human AF remains to be established. Lastly, an overview of clinical studies investigating SGLTi in the context of AF is provided.


Asunto(s)
Fibrilación Atrial/tratamiento farmacológico , Miocitos Cardíacos , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Transportador 1 de Sodio-Glucosa/antagonistas & inhibidores , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Animales , Calcio/metabolismo , Células Cultivadas , Humanos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Especies Reactivas de Oxígeno/metabolismo
14.
Circulation ; 139(20): 2342-2357, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-30818997

RESUMEN

BACKGROUND: The primary cilium is a singular cellular structure that extends from the surface of many cell types and plays crucial roles in vertebrate development, including that of the heart. Whereas ciliated cells have been described in developing heart, a role for primary cilia in adult heart has not been reported. This, coupled with the fact that mutations in genes coding for multiple ciliary proteins underlie polycystic kidney disease, a disorder with numerous cardiovascular manifestations, prompted us to identify cells in adult heart harboring a primary cilium and to determine whether primary cilia play a role in disease-related remodeling. METHODS: Histological analysis of cardiac tissues from C57BL/6 mouse embryos, neonatal mice, and adult mice was performed to evaluate for primary cilia. Three injury models (apical resection, ischemia/reperfusion, and myocardial infarction) were used to identify the location and cell type of ciliated cells with the use of antibodies specific for cilia (acetylated tubulin, γ-tubulin, polycystin [PC] 1, PC2, and KIF3A), fibroblasts (vimentin, α-smooth muscle actin, and fibroblast-specific protein-1), and cardiomyocytes (α-actinin and troponin I). A similar approach was used to assess for primary cilia in infarcted human myocardial tissue. We studied mice silenced exclusively in myofibroblasts for PC1 and evaluated the role of PC1 in fibrogenesis in adult rat fibroblasts and myofibroblasts. RESULTS: We identified primary cilia in mouse, rat, and human heart, specifically and exclusively in cardiac fibroblasts. Ciliated fibroblasts are enriched in areas of myocardial injury. Transforming growth factor ß-1 signaling and SMAD3 activation were impaired in fibroblasts depleted of the primary cilium. Extracellular matrix protein levels and contractile function were also impaired. In vivo, depletion of PC1 in activated fibroblasts after myocardial infarction impaired the remodeling response. CONCLUSIONS: Fibroblasts in the neonatal and adult heart harbor a primary cilium. This organelle and its requisite signaling protein, PC1, are required for critical elements of fibrogenesis, including transforming growth factor ß-1-SMAD3 activation, production of extracellular matrix proteins, and cell contractility. Together, these findings point to a pivotal role of this organelle, and PC1, in disease-related pathological cardiac remodeling and suggest that some of the cardiovascular manifestations of autosomal dominant polycystic kidney disease derive directly from myocardium-autonomous abnormalities.


Asunto(s)
Fibroblastos/ultraestructura , Miocardio/patología , Riñón Poliquístico Autosómico Dominante/patología , Células 3T3/ultraestructura , Animales , Animales Recién Nacidos , Remodelación Atrial , Cilios , Corazón Fetal/citología , Fibrosis , Lesiones Cardíacas/patología , Humanos , Cinesinas/deficiencia , Cinesinas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/patología , Riñón Poliquístico Autosómico Dominante/genética , Ratas , Transducción de Señal , Proteína smad3/fisiología , Canales Catiónicos TRPP/deficiencia , Canales Catiónicos TRPP/fisiología , Factor de Crecimiento Transformador beta1/fisiología , Remodelación Ventricular
15.
Circulation ; 140(11): 921-936, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31220931

RESUMEN

BACKGROUND: Polycystin-1 (PC1) is a transmembrane protein originally identified in autosomal dominant polycystic kidney disease where it regulates the calcium-permeant cation channel polycystin-2. Autosomal dominant polycystic kidney disease patients develop renal failure, hypertension, left ventricular hypertrophy, and diastolic dysfunction, among other cardiovascular disorders. These individuals harbor PC1 loss-of-function mutations in their cardiomyocytes, but the functional consequences are unknown. PC1 is ubiquitously expressed, and its experimental ablation in cardiomyocyte-specific knockout mice reduces contractile function. Here, we set out to determine the pathophysiological role of PC1 in cardiomyocytes. METHODS: Wild-type and cardiomyocyte-specific PC1 knockout mice were analyzed by echocardiography. Excitation-contraction coupling was assessed in isolated cardiomyocytes and human embryonic stem cell-derived cardiomyocytes, and functional consequences were explored in heterologous expression systems. Protein-protein interactions were analyzed biochemically and by means of ab initio calculations. RESULTS: PC1 ablation reduced action potential duration in cardiomyocytes, decreased Ca2+ transients, and myocyte contractility. PC1-deficient cardiomyocytes manifested a reduction in sarcoendoplasmic reticulum Ca2+ stores attributable to a reduced action potential duration and sarcoendoplasmic reticulum Ca2+ ATPase (SERCA) activity. An increase in outward K+ currents decreased action potential duration in cardiomyocytes lacking PC1. Overexpression of full-length PC1 in HEK293 cells significantly reduced the current density of heterologously expressed Kv4.3, Kv1.5 and Kv2.1 potassium channels. PC1 C terminus inhibited Kv4.3 currents to the same degree as full-length PC1. Additionally, PC1 coimmunoprecipitated with Kv4.3, and a modeled PC1 C-terminal structure suggested the existence of 2 docking sites for PC1 within the N terminus of Kv4.3, supporting a physical interaction. Finally, a naturally occurring human mutant PC1R4228X manifested no suppressive effects on Kv4.3 channel activity. CONCLUSIONS: Our findings uncover a role for PC1 in regulating multiple Kv channels, governing membrane repolarization and alterations in SERCA activity that reduce cardiomyocyte contractility.


Asunto(s)
Potenciales de Acción/fisiología , Miocitos Cardíacos/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Canales Catiónicos TRPP/deficiencia , Animales , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Canales Catiónicos TRPP/genética
16.
Nutr Metab Cardiovasc Dis ; 30(11): 2085-2092, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-32807637

RESUMEN

BACKGROUND AND AIMS: Data from animals suggest that immunoglobulins G (IgG) play a mechanistic role in atherosclerosis and diabetes through endothelial dysfunction and insulin resistance. Patients with common variable immunodeficiency (CVID), who have low circulating levels of IgG and are treated with intravenous polyclonal IgG (IVIgG), may provide an ideal model to clarify whether circulating IgG modulate endothelial function and affect insulin sensitivity in humans. METHODS AND RESULTS: We studied 24 patients with CVID and 17 matched healthy controls (HC). Endothelial function was evaluated as flow mediated dilation (FMD) of the brachial artery at baseline and 1, 7, 14, and 21 days after IVIgG infusion in the CVID patients. We measured also plasma glucose, insulin, and calculated the HOMA-IR index. We also investigated the role of human IgG on the production of Nitric Oxide (NO) in vitro in Human Coronary Artery Endothelial Cells (HCAEC). Compared to HC, FMD of CVID patients was significantly impaired at baseline (9.4 ± 0.9 and 7.6 ± 0.6% respectively, p < 0.05) but rose above normal levels 1 and 7 days after IVIgG infusion to return at baseline at 14 and 21 days. Serum insulin concentration and HOMA-IR index dropped by 50% in CVID patients after IVIgG (p < 0.002 vs. baseline). In vitro IgG stimulated NO production in HCAEC. CONCLUSIONS: Reduced IgG levels are associated with endothelial dysfunction and IVIgG stimulates endothelial function directly while improving insulin sensitivity. The current findings may suggest an anti-atherogenic role of human IgG.


Asunto(s)
Arteria Braquial/efectos de los fármacos , Inmunodeficiencia Variable Común/tratamiento farmacológico , Endotelio Vascular/efectos de los fármacos , Inmunoglobulina G/administración & dosificación , Inmunoglobulinas Intravenosas/administración & dosificación , Resistencia a la Insulina , Vasodilatación/efectos de los fármacos , Adolescente , Biomarcadores/sangre , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Arteria Braquial/metabolismo , Arteria Braquial/fisiopatología , Estudios de Casos y Controles , Células Cultivadas , Inmunodeficiencia Variable Común/sangre , Inmunodeficiencia Variable Común/fisiopatología , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Femenino , Humanos , Infusiones Intravenosas , Insulina/sangre , Masculino , Óxido Nítrico/metabolismo , Factores de Tiempo , Resultado del Tratamiento , Adulto Joven
18.
J Mol Cell Cardiol ; 134: 144-153, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31340162

RESUMEN

BACKGROUND: Energy metabolism and substrate selection are key aspects of correct myocardial mechanical function. Myocardial preference for oxidizable substrates changes in both hypertrophy and in overt failure. Previous work has shown that glucose oxidation is upregulated in overpressure hypertrophy, but its fate in overt failure is less clear. Anaplerotic flux of pyruvate into the tricarboxylic acid cycle (TCA) has been posited as a secondary fate of glycolysis, aside from pyruvate oxidation or lactate production. METHODS AND RESULTS: A model of heart failure that emulates both valvular and hypertensive heart disease, the severe transaortic constriction (sTAC) mouse, was assayed for changes in substrate preference using metabolomic and carbon-13 flux measurements. Quantitative measures of O2 consumption in the Langendorff perfused mouse heart were paired with 13C isotopomer analysis to assess TCA cycle turnover. Since the heart accommodates oxidation of all physiological energy sources, the utilization of carbohydrates, fatty acids, and ketones were measured simultaneously using a triple-tracer NMR method. The fractional contribution of glucose to acetyl-CoA production was upregulated in heart failure, while other sources were not significantly different. A model that includes both pyruvate carboxylation and anaplerosis through succinyl-CoA produced superior fits to the data compared to a model using only pyruvate carboxylation. In the sTAC heart, anaplerosis through succinyl-CoA is elevated, while pyruvate carboxylation was not. Metabolomic data showed depleted TCA cycle intermediate pool sizes versus the control, in agreement with previous results. CONCLUSION: In the sTAC heart failure model, the glucose contribution to acetyl-CoA production was significantly higher, with compensatory changes in fatty acid and ketone oxidation not reaching a significant level. Anaplerosis through succinyl-CoA is also upregulated, and is likely used to preserve TCA cycle intermediate pool sizes. The triple tracer method used here is new, and can be used to assess sources of acetyl-CoA production in any oxidative tissue.


Asunto(s)
Aorta/patología , Metabolismo Energético/fisiología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Metaboloma , Miocardio/metabolismo , Acetilcoenzima A/metabolismo , Animales , Aorta/cirugía , Ciclo del Ácido Cítrico/fisiología , Constricción , Modelos Animales de Enfermedad , Corazón/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Masculino , Metabolómica , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción , Ácido Pirúvico/metabolismo
20.
Circulation ; 137(24): 2613-2634, 2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29437120

RESUMEN

BACKGROUND: Myocardium irreversibly injured by ischemic stress must be efficiently repaired to maintain tissue integrity and contractile performance. Macrophages play critical roles in this process. These cells transform across a spectrum of phenotypes to accomplish diverse functions ranging from mediating the initial inflammatory responses that clear damaged tissue to subsequent reparative functions that help rebuild replacement tissue. Although macrophage transformation is crucial to myocardial repair, events governing this transformation are poorly understood. METHODS: Here, we set out to determine whether innate immune responses triggered by cytoplasmic DNA play a role. RESULTS: We report that ischemic myocardial injury, along with the resulting release of nucleic acids, activates the recently described cyclic GMP-AMP synthase-stimulator of interferon genes pathway. Animals lacking cyclic GMP-AMP synthase display significantly improved early survival after myocardial infarction and diminished pathological remodeling, including ventricular rupture, enhanced angiogenesis, and preserved ventricular contractile function. Furthermore, cyclic GMP-AMP synthase loss of function abolishes the induction of key inflammatory programs such as inducible nitric oxide synthase and promotes the transformation of macrophages to a reparative phenotype, which results in enhanced repair and improved hemodynamic performance. CONCLUSIONS: These results reveal, for the first time, that the cytosolic DNA receptor cyclic GMP-AMP synthase functions during cardiac ischemia as a pattern recognition receptor in the sterile immune response. Furthermore, we report that this pathway governs macrophage transformation, thereby regulating postinjury cardiac repair. Because modulators of this pathway are currently in clinical use, our findings raise the prospect of new treatment options to combat ischemic heart disease and its progression to heart failure.


Asunto(s)
Citosol/enzimología , ADN/metabolismo , Macrófagos/enzimología , Infarto del Miocardio/enzimología , Miocardio/metabolismo , Nucleotidiltransferasas/metabolismo , Transducción de Señal , Animales , Macrófagos/patología , Ratones , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Miocardio/patología , Nucleotidiltransferasas/genética , Remodelación Ventricular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA