Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Chem Soc Rev ; 49(15): 5140-5158, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32597430

RESUMEN

Covalent long-range ordered (crystalline) sheets called 2D polymers have recently been synthesized by irradiating single crystals of suitably packed monomers. To have such an action proceed successfully, billions of bond formation processes have to be mastered exclusively in two dimensions within 3D crystals. This raises questions as to how to elucidate the mechanism of these unusual polymerizations as well as their entire strain management. The article will show that single crystal X-ray diffraction based on both Bragg and diffuse scattering are powerful techniques to achieve such goal. The very heart of both techniques will be explained and it will be shown what can be safely concluded with their help and what not. Consequently, the reader will understand why some crystals break during polymerization, while others stay intact. This understanding will then be molded into a few guidelines that should help pave the way for future developments of 2D polymers by those interested in joining the effort with this fascinating and emerging class of 2D materials.

2.
Angew Chem Int Ed Engl ; 59(14): 5683-5695, 2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-31821673

RESUMEN

2D polymer sheets with six positively charged pyrylium groups at each pore edge in a stacked single crystal can be transformed into a 2D polymer with six pyridines per pore by exposure to gaseous ammonia. This reaction furnishes still a crystalline material with tunable protonation degree at regular nano-sized pores promising as separation membrane. The exfoliation is compared for both 2D polymers with the latter being superior. Its liquid phase exfoliation yields nanosheet dispersions, which can be size-selected using centrifugation cascades. Monolayer contents of ≈30 % are achieved with ≈130 nm sized sheets in mg quantities, corresponding to tens of trillions of monolayers. Quantification of nanosheet sizes, layer number and mass shows that this exfoliation is comparable to graphite. Thus, we expect that recent advances in exfoliation of graphite or inorganic crystals (e.g. scale-up, printing etc.) can be directly applied to this 2D polymer as well as to covalent organic frameworks.

3.
J Am Chem Soc ; 141(25): 9867-9871, 2019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31244135

RESUMEN

Structural elucidation of 2D polymer monolayers proving long-range order is a challenge that limits the pace in which this recent field of polymer chemistry and of synthetic 2D materials develops. To overcome this bottleneck, we here present a method in which tip-enhanced Raman spectroscopy is combined with a random growth crystallization model to obtain global features from local spectroscopic information. Concretely, we prove the nature and determine the conversion number X of the cross-links for two new 2D homopolymers and one (of three) new 2D copolymers. Assuming random and in-plane growth, our model results in crystallinity degrees of 93.1% to 99.7% and mean radii of defect-free crystalline areas of 3-15 nm for conversion numbers of 84% < X < 98%. Thus, we provide strong evidence for the synthetic monolayer 2D materials presented that they qualify as 2D polymers and are therefore perfectly suited for in-depth studies both in a more fundamental direction as well as toward application. This example shows how our method can affect current research on covalent sheets.

4.
Soft Matter ; 15(32): 6547-6556, 2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31359025

RESUMEN

Dendronized polymers (DPs) are large and compact main-chain linear polymers with a cylindrical shape and cross-sectional diameters of up to ∼15 nm. They are therefore considered molecular objects, and it was of interest whether given their experimentally accessible, well-defined dimensions, the density of individual DPs could be determined. We present measurements on individual, deposited DP chains, providing molecular dimensions from scanning and transmission electron microscopy and mass-per-length values from quantitative scanning transmission electron microscopy. These results are compared with density values obtained from small-angle X-ray scattering on annealed bulk specimen and with classical envelope density measurements, obtained using hydrostatic weighing or a density gradient column. The samples investigated comprise a series of DPs with side groups of dendritic generations g = 1-8. The key findings are a very large spread of the density values over all samples and methods, and a consistent increase of densities with g over all methods. While this work highlights the advantages and limitations of the applied methods, it does not provide a conclusive answer to the question of which method(s) to use for the determination of densities of individual molecular objects. We are nevertheless confident that these first attempts to answer this challenging question will stimulate more research into this important aspect of polymer and soft matter science.

5.
Macromol Rapid Commun ; 40(1): e1800719, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30565776

RESUMEN

This feature article provides both a critical perspective as to where synthetic 2D polymers currently stand and a rather substantial view into how the future of this exciting field of polymer chemistry might look. It starts out by addressing strategic considerations meant to familiarize the reader with what to expect when entering the field. To better understand these considerations, the very nature of a 2D polymer is addressed in comparison to other organic 2D materials. Thereafter, the article moves quite intensely and critically into synthetic and mechanistic issues of 2D polymers before concentrating on the important structural analytics that one has to go through when unequivocally establishing these novel sheet-like polymeric objects. After a short excursion into the matter of exfoliation, the feature article then culminates in a section attempting to forecast the future. Key differences between 1D and 2D polymers are highlighted, and those considered by the authors to be the most attractive and burning research goals are further discussed. It is hoped that the reader will find this speculative section inspiring enough such that ideas that will help in advancing 2D polymers even faster are generated.


Asunto(s)
Polímeros/síntesis química , Estructura Molecular , Tamaño de la Partícula , Polímeros/química , Propiedades de Superficie
6.
Chimia (Aarau) ; 73(6): 487-492, 2019 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38549211

RESUMEN

Recent breakthroughs in the single crystal approach to synthetic 2D polymers have shifted the limelight onto these long-range ordered sheet-like polymers synthesized at the air/water interface, where one obtains them as laterally macroscopic monolayers without the need for exfoliation. The article presents the most recent monomers for this approach and shows an important analytical development in the field of structure elucidation as well as findings relevant to potential applications. The analytical development concerns an indirect method to establish crystallinity of 2D polymer monolayers based on a combination of tip-enhanced Raman spectroscopy and a crystallization model. The more application-oriented aspects concern the use of ordered 1-1.5 nm thick monomer arrays for laser-triggered writing and for a novel type of lithography both based on a two-dimensional polymerization.

7.
Chemistry ; 24(56): 15003-15012, 2018 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-29984526

RESUMEN

In this work we present one of the rare cases of single-crystal-to-single-crystal (SCSC) linear polymerizations, resulting in a novel ladder-type polymer. The polymerization is based on the photoinduced [4+4]-cycloaddition reactions between trifunctional anthracene-based monomers. The careful design of the monomer anthraphane-tri(OMe), results in perfectly stacked anthracene pairs in the crystal structure, with Schmidt's distances d=3.505-3.666 Šand shift s=1.109 Å, allowing a selective linear polymerization in quantitative yields and in a matter of minutes, without compromising the integrity of the single crystals. The obtained polyanthraphane-tri(OMe), reveals moreover a very interesting and unprecedented case of stereoisomerism, which is characteristic for polyanthraphanes.

8.
Angew Chem Int Ed Engl ; 57(42): 13748-13763, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-29845730

RESUMEN

Periodic and nanoporous monolayer polymers, the structures of which can be viewed as molecular fishing nets, have been classified as 2D polymers. They have been previously synthesized under mild photoirradiation conditions in the interior of layered single crystals of well-designed monomers, followed by a liquid-phase exfoliation. While these mild conditions allow for full structure control, the size of 2D polymers obtained cannot exceed that of the crystals from which they are prepared. In this Review, we discuss different concepts currently pursued to prepare macroscopically sized 2D polymers, focusing on syntheses at the air-water and liquid-liquid interfaces. While these interfaces are larger reaction loci than single crystals, sheet-like polymers obtained at them pose complex and time-consuming analytical challenges. Some of these challenges are concretely discussed and indicators are provided for identifying the promising cases, enabling to concentrate on them in the future research. Additionally, this Review discusses three representative examples of 2D polymers to provide a state-of-the-art picture of this emerging field of polymer and materials science. Finally, we sketch the range of applications, such as nanomembranes, electronics, optoelectronics, and electrocatalysts for water splitting, that are relevant for these novel organic 2D materials.

9.
Angew Chem Int Ed Engl ; 57(33): 10584-10588, 2018 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-29888847

RESUMEN

A trifunctional, partially fluorinated anthracene-substituted triptycene monomer was spread at an air/water interface into a monolayer, which was transformed into a long-range-ordered 2D polymer by irradiation with a standard UV lamp. The polymer was analyzed by Brewster angle microscopy, scanning tunneling microscopy measurements, and non-contact atomic force microscopy, which confirmed the generation of a network structure with lattice parameters that are virtually identical to a structural model network based on X-ray diffractometry of a closely related 2D polymer. The nc-AFM images highlight the long-range order over areas of at least 300×300 nm2 . As required for a 2D polymer, the pore sizes are monodisperse, except for the regions where the network is somewhat stretched because it spans over protrusions. Together with a previous report on the nature of the cross-links in this network, the structural information provided herein leaves no doubt that a 2D polymer has been synthesized under ambient conditions at an air/water interface.

10.
J Am Chem Soc ; 139(5): 2053-2059, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28084075

RESUMEN

The single-crystal-to-single-crystal (scsc) synthesis of a 2D polymer based on photochemically triggered [2 + 2]-cycloaddition is reported. Both monomer and polymer single crystals are analyzed by X-ray diffraction, which is the first case of a scsc two-dimensional polymerization based on this cycloaddition and the third ever case for a scsc synthesis of a 2D polymer. The product crystals at quantitative conversion are wet-exfoliated under mild conditions and afford countless features that are single and double layers as judged by their AFM heights of hAFM ≈ 1.2 ± 0.5 and 2.2 ± 0.5 nm, respectively. The X-ray-structure-based molecular weight of the 2D polymers and their degree of polymerization per µm2 are M = 360 MDa and Pn = 464 900, respectively. The sheet size is on the order of 5 × 5 µm2.

11.
Langmuir ; 33(7): 1646-1654, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28125880

RESUMEN

The behavior of compound 2 [1,3,5-tri(2,2'-bipyridin-5-yl)benzene] with three bipyridine units arranged in a star geometry is investigated in the presence and absence of Ni(ClO4)2. Its properties at the air-water interface as well as after transfer onto a solid substrate are studied by several techniques including Brewster angle microscopy, X-ray reflectivity, neutron reflectivity, X-ray photoelectron spectroscopy, Rutherford backscattering spectrometry, and atomic force microscopy combined with optical microscopy. It is found that compound 2 within the monolayers formed stays almost vertical at the interface and that at high Ni2+/2 (Ni2+/2 = 4000, 20'000) ratios two of the three bipyridine units of 2 are complexed, resulting in supramolecular sheets that are likely composed of arrays of linear metal-organic complexation polymers.

12.
Angew Chem Int Ed Engl ; 56(32): 9361-9366, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28597527

RESUMEN

We report an investigation of interfacial fluorinated hydrocarbon (carboxylic-fantrip) monolayers by nanoscale imaging using tip-enhanced Raman spectroscopy (TERS) and density functional theory (DFT) calculations. By comparing TERS images of a sub-monolayer prepared by spin-coating and a π-π-stacked monolayer on Au(111) in which the molecular orientation is confined, specific Raman peaks shift and line widths narrow in the transferred LB monolayer. Based on DFT calculations that take into account dispersion corrections and surface selection rules, these specific effects are proposed to originate from π-π stacking and molecular orientation restriction. TERS shows the possibility to distinguish between a random and locked orientation with a spatial resolution of less than 10 nm. This work combines experimental TERS imaging with theoretical DFT calculations and opens up the possibility of studying molecular orientations and intermolecular interaction at the nanoscale and molecular level.

13.
Angew Chem Int Ed Engl ; 56(48): 15262-15266, 2017 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-28922539

RESUMEN

This work describes a two-dimensional polymerization at an air/water interface and provides, for the first time, direct spectroscopic evidence for the kind of crosslinks formed and for the conversion reached in a covalently bonded monolayer sheet. This evidence was obtained through a combination of a variety of monolayer characterization techniques before and after transfer onto solid substrates, in particular by tip-enhanced Raman spectroscopy (TERS) and TERS mapping after transfer of both the monomer and polymer monolayer onto Au(111). This work is a major advance for the field of 2D polymers synthesized at the air/water interface as it, in principle, allows estimation of the crystallinity by percolation theory and the location of regions with defects.

14.
J Am Chem Soc ; 138(28): 8976-81, 2016 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-27347597

RESUMEN

This work proves the existence and chemical addressability of defined edge groups of a 2D polymer. Pseudohexagonally prismatic single crystals consisting of layered stacks of a 2D polymer are used. They should expose anthracene-based edge groups at the six (100) but not at the two pseudohexagonal (001) and (001̅) faces. The crystals are reacted with the isotopically enriched dienophiles maleic anhydride and a C18-alkyl chain-modified maleimide. In both cases the corresponding Diels-Alder adducts between these reagents and the edge groups are formed as confirmed by solid state NMR spectroscopy. The same applies to a maleimide derivative carrying a BODIPY dye which was chosen for its fluorescence to be out of the range of the self-fluorescence of the 2D polymer crystals stemming from contained template molecules. If the crystals are excited at λ = 633 nm, their (100) faces and thus their rims fluoresce brightly, while the pseudohexagonal faces remain silent. This is visible when the crystals lie on a pseudohexagonal face. Lambda-mode laser scanning microscopy confirms this fluorescence to originate from the BODIPY dye. Micromechanical exfoliation of the dye-modified crystals results in thinner sheet packages which still exhibit BODIPY fluorescence right at the rim of these packages. This work establishes the chemical nature of the edge groups of a 2D polymer and is also the first implementation of an edge group modification similar to end group modifications of linear polymers.

15.
Chemphyschem ; 17(17): 2767-72, 2016 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-27273228

RESUMEN

Aspects of size, structural (im)perfection, inner density, and guest molecule loading capacity of dendronized polymers (DPs) of high generation (6≤g≤8) in aqueous solution are studied using electron paramagnetic resonance spectroscopy on amphiphilic, spin-labeled guest molecules. The results show that the interior of the charged DPs is strongly polar, especially in comparison to their lower generation (1-4) analogues. This is a direct sign that large amounts of water penetrate the DP surface, reflecting the structural (im)perfections of these high-generation DPs and much lower segmental densities than theoretically achievable. Images obtained with atomic force microscopy reveal that the high-generation DPs do not aggregate and give further insights into the structural imperfections. Electron paramagnetic resonance spectroscopic data further show that despite their structural imperfections, these DPs can bind and release large numbers of amphiphilic molecules. It is concluded that attention should be paid to their synthesis, for which a protocol needs to be developed that avoids the relatively large amount of defects generated in the direct conversion of a generation g=4 DP to a generation g=6 DP, which had to be used here.

16.
Photochem Photobiol Sci ; 15(8): 964-8, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27428283

RESUMEN

Dendronized polymers exhibit defined structures with bulky side chains (dendrons) on a linear polymer backbone. Upon reaction with radicals, chromophores close to the backbone were bleached. The reaction rate and yield decreased with increasing dendron size, demonstrating that the inside of dendronized polymers can be "shielded" by bulky dendrons from access by reactive species.


Asunto(s)
Dendrímeros/química , Polímeros/química , Compuestos de Anilina/química , Radicales Libres/química , Cinética , Conformación Molecular
17.
Macromol Rapid Commun ; 37(20): 1638-1650, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27558290

RESUMEN

Scaling behavior of one-dimensional (1D) and two-dimensional (2D) polymers in dilute solution is discussed with the goal of stimulating experimental work by chemists, physicists, and material scientists in the emerging field of 2D polymers. The arguments are based on renormalization-group theory, which is explained for a general audience. Many ideas and methods successfully applied to 1D polymers are found not to work if one goes to 2D polymers. The role of the various states exhibiting universal behavior is turned upside down. It is expected that solubility will be a serious challenge for 2D polymers. Therefore, given the crucial importance of solutions in characterization and processing, synthetic concepts are proposed that allow the local bending rigidity and the molar mass to be tuned and the long-range interactions to be engineered, all with the goal of preventing the polymer from falling into flat or compact states.


Asunto(s)
Polímeros/química , Polímeros/síntesis química , Soluciones
18.
Angew Chem Int Ed Engl ; 55(1): 213-7, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26768822

RESUMEN

A two-dimensional covalent organic monolayer was synthesized from simple aromatic triamine and dialdehyde building blocks by dynamic imine chemistry at the air/water interface (Langmuir-Blodgett method). The obtained monolayer was characterized by optical microscopy, scanning electron microscopy, and atomic force microscopy, which unambiguously confirmed the formation of a large (millimeter range), unimolecularly thin aromatic polyimine sheet. The imine-linked chemical structure of the obtained monolayer was characterized by tip-enhanced Raman spectroscopy, and the peak assignment was supported by spectra simulated by density functional theory. Given the modular nature and broad substrate scope of imine formation, the work reported herein opens up many new possibilities for the synthesis of customizable 2D polymers and systematic studies of their structure-property relationships.

19.
J Am Chem Soc ; 137(10): 3450-3, 2015 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-25715659

RESUMEN

We present the synthesis of a two-dimensional polymer at the air/water interface and its nm-resolution imaging. Trigonal star, amphiphilic monomers bearing three anthraceno groups on a central triptycene core are confined at the air/water interface. Compression followed by photopolymerization on the interface provides the two-dimensional polymer. Analysis by scanning tunneling microscopy suggests that the polymer is periodic with ultrahigh pore density.

20.
Soft Matter ; 11(6): 1116-26, 2015 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-25528968

RESUMEN

The internal organization of macromonomers (MGs) consisting of all-thiophene dendrons of generation g = 2 and 3 attached to a phenyl core, as well as of the dendronized polymers resulting from polymerization of these macromonomers (PG2 and PG3, respectively), has been investigated using theoretical methods. The conformational preferences of the MGs, determined using density functional theory calculations, are characterized by the relative orientation between dendrons and core. We find that the strain of the MGs increases with the generation number and is alleviated by small conformational re-arrangements of the peripheral thiophene rings. The conformations obtained for the MGs have subsequently been used to construct models for the dendronized polymers. Classical molecular dynamics simulations have evidenced that the interpenetration of dendrons belonging to different repeat units is very small for PG2. In contrast, the degree of interpenetration is found to be very high for PG3, which also shows a significant degree of backfolding (i.e. occurrence of peripheral methyl groups approaching the backbone). Consequently, PG2 behaves as a conventional linear flexible polymer bearing bulk pendant groups, whereas PG3 is better characterized as a semirigid homogeneous cylinder. The two polymers are stabilized by π-π stacking interactions, even though these are significantly more abundant for PG3 than for PG2; the average numbers of interactions per repeat unit are 3.0 and 8.8 for PG2 and PG3, respectively. While in these interactions the thiophene rings can adopt either parallel (sandwich) or perpendicular (T-shaped) dispositions, the former scenario turns out to be the most abundant.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA