Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 37(3): e22752, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36794636

RESUMEN

Atherosclerosis is a chronic inflammatory condition of our arteries and the main underlying pathology of myocardial infarction and stroke. The pathogenesis is age-dependent, but the links between disease progression, age, and atherogenic cytokines and chemokines are incompletely understood. Here, we studied the chemokine-like inflammatory cytokine macrophage migration inhibitory factor (MIF) in atherogenic Apoe-/- mice across different stages of aging and cholesterol-rich high-fat diet (HFD). MIF promotes atherosclerosis by mediating leukocyte recruitment, lesional inflammation, and suppressing atheroprotective B cells. However, links between MIF and advanced atherosclerosis across aging have not been systematically explored. We compared effects of global Mif-gene deficiency in 30-, 42-, and 48-week-old Apoe-/- mice on HFD for 24, 36, or 42 weeks, respectively, and in 52-week-old mice on a 6-week HFD. Mif-deficient mice exhibited reduced atherosclerotic lesions in the 30/24- and 42/36-week-old groups, but atheroprotection, which in the applied Apoe-/- model was limited to lesions in the brachiocephalic artery and abdominal aorta, was not detected in the 48/42- and 52/6-week-old groups. This suggested that atheroprotection afforded by global Mif-gene deletion differs across aging stages and atherogenic diet duration. To characterize this phenotype and study the underlying mechanisms, we determined immune cells in the periphery and vascular lesions, obtained a multiplex cytokine/chemokine profile, and compared the transcriptome between the age-related phenotypes. We found that Mif deficiency promotes lesional macrophage and T-cell counts in younger but not aged mice, with subgroup analysis pointing toward a role for Trem2+ macrophages. The transcriptomic analysis identified pronounced MIF- and aging-dependent changes in pathways predominantly related to lipid synthesis and metabolism, lipid storage, and brown fat cell differentiation, as well as immunity, and atherosclerosis-relevant enriched genes such as Plin1, Ldlr, Cpne7, or Il34, hinting toward effects on lesional lipids, foamy macrophages, and immune cells. Moreover, Mif-deficient aged mice exhibited a distinct plasma cytokine/chemokine signature consistent with the notion that mediators known to drive inflamm'aging are either not downregulated or even upregulated in Mif-deficient aged mice compared with the corresponding younger ones. Lastly, Mif deficiency favored formation of lymphocyte-rich peri-adventitial leukocyte clusters. While the causative contributions of these mechanistic pillars and their interplay will be subject to future scrutiny, our study suggests that atheroprotection due to global Mif-gene deficiency in atherogenic Apoe-/- mice is reduced upon advanced aging and identifies previously unrecognized cellular and molecular targets that could explain this phenotype shift. These observations enhance our understanding of inflamm'aging and MIF pathways in atherosclerosis and may have implications for translational MIF-directed strategies.


Asunto(s)
Aterosclerosis , Factores Inhibidores de la Migración de Macrófagos , Placa Aterosclerótica , Animales , Ratones , Factores Inhibidores de la Migración de Macrófagos/genética , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Aterosclerosis/metabolismo , Quimiocinas , Envejecimiento , Apolipoproteínas E/metabolismo , Ratones Noqueados , Ratones Endogámicos C57BL , Glicoproteínas de Membrana , Receptores Inmunológicos
2.
Front Cardiovasc Med ; 11: 1346475, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510194

RESUMEN

Chronic kidney disease (CKD) significantly increases cardiovascular risk and mortality, and the accumulation of uremic toxins in the circulation upon kidney failure contributes to this increased risk. We thus performed a screening for potential novel mediators of reduced cardiovascular health starting from dialysate obtained after hemodialysis of patients with CKD. The dialysate was gradually fractionated to increased purity using orthogonal chromatography steps, with each fraction screened for a potential negative impact on the metabolic activity of cardiomyocytes using a high-throughput MTT-assay, until ultimately a highly purified fraction with strong effects on cardiomyocyte health was retained. Mass spectrometry and nuclear magnetic resonance identified the metabolite mycophenolic acid-ß-glucuronide (MPA-G) as a responsible substance. MPA-G is the main metabolite from the immunosuppressive agent MPA that is supplied in the form of mycophenolate mofetil (MMF) to patients in preparation for and after transplantation or for treatment of autoimmune and non-transplant kidney diseases. The adverse effect of MPA-G on cardiomyocytes was confirmed in vitro, reducing the overall metabolic activity and cellular respiration while increasing mitochondrial reactive oxygen species production in cardiomyocytes at concentrations detected in MMF-treated patients with failing kidney function. This study draws attention to the potential adverse effects of long-term high MMF dosing, specifically in patients with severely reduced kidney function already displaying a highly increased cardiovascular risk.

3.
Biomedicines ; 10(2)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35203629

RESUMEN

Inflammation and fibrosis play an important pathophysiological role in chronic kidney disease (CKD), with pro-inflammatory mediators and leukocytes promoting organ damage with subsequent fibrosis. Since chemokines are the main regulators of leukocyte chemotaxis and tissue inflammation, we performed systemic chemokine profiling in early CKD in mice. This revealed (C-C motif) ligands 6 and 9 (CCL6 and CCL9) as the most upregulated chemokines, with significantly higher levels of both chemokines in blood (CCL6: 3-4 fold; CCL9: 3-5 fold) as well as kidney as confirmed by Enzyme-linked Immunosorbent Assay (ELISA) in two additional CKD models. Chemokine treatment in a mouse model of early adenine-induced CKD almost completely abolished the CKD-induced infiltration of macrophages and myeloid cells in the kidney without impact on circulating leukocyte numbers. The other way around, especially CCL9-blockade aggravated monocyte and macrophage accumulation in kidney during CKD development, without impact on the ratio of M1-to-M2 macrophages. In parallel, CCL9-blockade raised serum creatinine and urea levels as readouts of kidney dysfunction. It also exacerbated CKD-induced expression of collagen (3.2-fold) and the pro-inflammatory chemokines CCL2 (1.8-fold) and CCL3 (2.1-fold) in kidney. Altogether, this study reveals for the first time that chemokines CCL6 and CCL9 are upregulated early in experimental CKD, with CCL9-blockade during CKD initiation enhancing kidney inflammation and fibrosis.

4.
Redox Biol ; 56: 102459, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36099852

RESUMEN

AIMS: Patients with chronic kidney disease (CKD) have an increased risk of cardiovascular events and exhibit myocardial changes including left ventricular (LV) hypertrophy and fibrosis, overall referred to as 'uremic cardiomyopathy'. Although different CKD animal models have been studied for cardiac effects, lack of consistent reporting on cardiac function and pathology complicates clear comparison of these models. Therefore, this study aimed at a systematic and comprehensive comparison of cardiac function and cardiac pathophysiological characteristics in eight different CKD models and mouse strains, with a main focus on adenine-induced CKD. METHODS AND RESULTS: CKD of different severity and duration was induced by subtotal nephrectomy or adenine-rich diet in various strains (C57BL/6J, C57BL/6 N, hyperlipidemic C57BL/6J ApoE-/-, 129/Sv), followed by the analysis of kidney function and morphology, blood pressure, cardiac function, cardiac hypertrophy, fibrosis, myocardial calcification and inflammation using functional, histological and molecular techniques, including cardiac gene expression profiling supplemented by oxidative stress analysis. Intriguingly, despite uremia of variable degree, neither cardiac dysfunction, hypertrophy nor interstitial fibrosis were observed. However, already moderate CKD altered cardiac oxidative stress responses and enhanced oxidative stress markers in each mouse strain, with cardiac RNA sequencing revealing activation of oxidative stress signaling as well as anti-inflammatory feedback responses. CONCLUSION: This study considerably expands the knowledge on strain- and protocol-specific differences in the field of cardiorenal research and reveals that several weeks of at least moderate experimental CKD increase oxidative stress responses in the heart in a broad spectrum of mouse models. However, this was insufficient to induce relevant systolic or diastolic dysfunction, suggesting that additional "hits" are required to induce uremic cardiomyopathy. TRANSLATIONAL PERSPECTIVE: Patients with chronic kidney disease (CKD) have an increased risk of cardiovascular adverse events and exhibit myocardial changes, overall referred to as 'uremic cardiomyopathy'. We revealed that CKD increases cardiac oxidative stress responses in the heart. Nonetheless, several weeks of at least moderate experimental CKD do not necessarily trigger cardiac dysfunction and remodeling, suggesting that additional "hits" are required to induce uremic cardiomyopathy in the clinical setting. Whether the altered cardiac oxidative stress balance in CKD may increase the risk and extent of cardiovascular damage upon additional cardiovascular risk factors and/or events will be addressed in future studies.


Asunto(s)
Cardiomiopatías , Insuficiencia Renal Crónica , Adenina , Animales , Antiinflamatorios , Apolipoproteínas E , Modelos Animales de Enfermedad , Fibrosis , Hipertrofia Ventricular Izquierda , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Insuficiencia Renal Crónica/etiología , Insuficiencia Renal Crónica/metabolismo
5.
Atherosclerosis ; 292: 23-30, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31733453

RESUMEN

BACKGROUND AND AIMS: IKKα is an important regulator of gene expression. As IKKα kinase inactivity in bone marrow-derived cells does not affect atherosclerosis, we here investigate the impact of a whole body-IKKα kinase inactivity on atherosclerosis. METHODS: Apolipoprotein E (Apoe)-deficient mice homozygous for an activation-resistant Ikkα-mutant (IkkαAA/AAApoe-/-) and Ikkα+/+Apoe-/- controls received a Western-type diet. Atherosclerotic lesion size and cellular content were analyzed using histology and immunofluorescence. Vascular protein expression and IKKα kinase activity were quantified by Luminex multiplex immuno-assay and ELISA. RESULTS: A vascular site-specific IKKα expression and kinase activation profile was revealed, with higher total IKKα protein levels in aortic root but increased IKKα phosphorylation, representing activated IKKα, in the aortic arch. This was associated with a vascular site-specific effect of IkkαAA/AA knock-in on atherosclerosis: in the aortic root, IkkαAA/AA knock-in decreased lesion size by 22.0 ±â€¯7.7% (p < 0.01), reduced absolute lesional smooth muscle cell numbers and lowered pro-atherogenic MMP2. In contrast, IkkαAA/AA knock-in increased lesion size in the aortic arch by 43.7 ±â€¯20.1% (p < 0.001), increased the abundance of lesional smooth muscle cells in brachiocephalic artery as main arch side branch and elevated MMP2. A similar profile was observed for MMP3. No effects were observed on necrotic core or collagen deposition in atherosclerotic lesions, nor on absolute lesional macrophage numbers. CONCLUSIONS: A non-activatable IKKα kinase differentially affects atherosclerosis in aortic root vs. aortic arch/brachiocephalic artery, associated with a differential vascular IKKα expression and kinase activation profile as well as with a vascular site-dependent impact on lesional smooth muscle cell accumulation and protein expression profiles.


Asunto(s)
Aterosclerosis/etiología , Quinasa I-kappa B/fisiología , Animales , Apolipoproteínas E/deficiencia , Aterosclerosis/metabolismo , Quinasa I-kappa B/antagonistas & inhibidores , Quinasa I-kappa B/genética , Ratones , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA