Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 83(23): 4386-4397.e9, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37995686

RESUMEN

The multi-pass transmembrane protein ACCELERATED CELL DEATH 6 (ACD6) is an immune regulator in Arabidopsis thaliana with an unclear biochemical mode of action. We have identified two loci, MODULATOR OF HYPERACTIVE ACD6 1 (MHA1) and its paralog MHA1-LIKE (MHA1L), that code for ∼7 kDa proteins, which differentially interact with specific ACD6 variants. MHA1L enhances the accumulation of an ACD6 complex, thereby increasing the activity of the ACD6 standard allele for regulating plant growth and defenses. The intracellular ankyrin repeats of ACD6 are structurally similar to those found in mammalian ion channels. Several lines of evidence link increased ACD6 activity to enhanced calcium influx, with MHA1L as a direct regulator of ACD6, indicating that peptide-regulated ion channels are not restricted to animals.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ancirinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Muerte Celular , Canales Iónicos/genética , Canales Iónicos/metabolismo , Inmunidad de la Planta/genética
2.
PLoS Genet ; 14(9): e1007628, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30235212

RESUMEN

Plants defend themselves against pathogens by activating an array of immune responses. Unfortunately, immunity programs may also cause unintended collateral damage to the plant itself. The quantitative disease resistance gene ACCELERATED CELL DEATH 6 (ACD6) serves to balance growth and pathogen resistance in natural populations of Arabidopsis thaliana. An autoimmune allele, ACD6-Est, which strongly reduces growth under specific laboratory conditions, is found in over 10% of wild strains. There is, however, extensive variation in the strength of the autoimmune phenotype expressed by strains with an ACD6-Est allele, indicative of genetic modifiers. Quantitative genetic analysis suggests that ACD6 activity can be modulated in diverse ways, with different strains often carrying different large-effect modifiers. One modifier is SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1 (SNC1), located in a highly polymorphic cluster of nucleotide-binding domain and leucine-rich repeat (NLR) immune receptor genes, which are prototypes for qualitative disease resistance genes. Allelic variation at SNC1 correlates with ACD6-Est activity in multiple accessions, and a common structural variant affecting the NL linker sequence can explain differences in SNC1 activity. Taken together, we find that an NLR gene can mask the activity of an ACD6 autoimmune allele in natural A. thaliana populations, thereby linking different arms of the plant immune system.


Asunto(s)
Ancirinas/inmunología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Arabidopsis/inmunología , Autoinmunidad/genética , Regulación de la Expresión Génica de las Plantas/inmunología , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/genética , Alelos , Ancirinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Resistencia a la Enfermedad/genética , Mutación , Enfermedades de las Plantas/genética , Plantas Modificadas Genéticamente , Transducción de Señal/inmunología
3.
Plant J ; 98(3): 492-510, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30659683

RESUMEN

Insight into how plants simultaneously cope with multiple stresses, for example, when challenged with biotic stress from pathogen infection and abiotic stress from drought, is important both for understanding evolutionary trade-offs and optimizing crop responses to these stresses. Mechanisms by which initial plant immune signaling antagonizes abscisic acid (ABA) signal transduction require further investigation. Using a chemical genetics approach, the small molecule [5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione (DFPM) has previously been identified due to its ability to suppress ABA signaling via plant immune signaling components. Here, we have used forward chemical genetics screening to identify DFPM-insensitive loci by monitoring the activity of ABA-inducible pRAB18::GFP in the presence of DFPM and ABA. The ability of DFPM to attenuate ABA signaling was reduced in rda mutants (resistant to DFPM inhibition of ABA signaling). One of the mutants, rda2, was mapped and is defective in a gene encoding a lectin receptor kinase. RDA2 functions in DFPM-mediated inhibition of ABA-mediated reporter expression. RDA2 is required for DFPM-mediated activation of immune signaling, including phosphorylation of mitogen-activated protein kinase (MAPK) 3 (MPK3) and MPK6, and induction of immunity marker genes. Our study identifies a previously uncharacterized receptor kinase gene that is important for DFPM-mediated immune signaling and inhibition of ABA signaling. We demonstrate that the lectin receptor kinase RDA2 is essential for perceiving the DFPM signal and activating MAPKs, and that MKK4 and MKK5 are required for DFPM interference with ABA signal transduction.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología
4.
J Cell Sci ; 131(2)2018 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-29242230

RESUMEN

Stem cell regeneration is crucial for both cell turnover and tissue healing in multicellular organisms. In Arabidopsis roots, a reduced group of cells known as the quiescent center (QC) act as a cell reservoir for surrounding stem cells during both normal growth and in response to external damage. Although cells of the QC have a very low mitotic activity, plant hormones such as brassinosteroids (BRs) can promote QC divisions. Here, we used a tissue-specific strategy to investigate the spatial signaling requirements of BR-mediated QC divisions. We generated stem cell niche-specific receptor knockout lines by placing an artificial microRNA against BRI1 (BRASSINOSTEROID INSENSITIVE 1) under the control of the QC-specific promoter WOX5. Additionally, QC-specific knock-in lines for BRI1 and its downstream transcription factor BES1 (BRI1-EMS-SUPPRESOR1) were also created using the WOX5 promoter. By analyzing the roots of these lines, we show that BES1-mediated signaling cell-autonomously promotes QC divisions, that BRI1 is essential for sensing nearby inputs and triggering QC divisions and that DNA damage promotes BR-dependent paracrine signaling in the stem cell niche as a prerequisite to stem cell replenishment.


Asunto(s)
Arabidopsis/citología , Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Comunicación Paracrina , Regeneración , Transducción de Señal , Nicho de Células Madre , Proteínas de Arabidopsis/metabolismo , Microambiente Celular , Daño del ADN , Regulación hacia Abajo/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de la Membrana/metabolismo , Meristema/citología , Meristema/metabolismo , Modelos Biológicos , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Plantones/citología , Plantones/metabolismo , Transcripción Genética
5.
Plant Physiol ; 176(1): 730-741, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29114080

RESUMEN

As regulators of gene expression in multicellular organisms, microRNAs (miRNAs) are crucial for growth and development. Although a plethora of factors involved in their biogenesis and action in Arabidopsis (Arabidopsis thaliana) has been described, these processes and their fine-tuning are not fully understood. Here, we used plants expressing an artificial miRNA target mimic (MIM) to screen for negative regulators of miR156. We identified a new mutant allele of the F-box gene HAWAIIAN SKIRT (HWS; At3G61590), hws-5, as a suppressor of the MIM156-induced developmental and molecular phenotypes. In hws plants, levels of some endogenous miRNAs are increased and their mRNA targets decreased. Plants constitutively expressing full-length HWS-but not a truncated version lacking the F-box domain-display morphological and molecular phenotypes resembling those of mutants defective in miRNA biogenesis and activity. In combination with such mutants, hws loses its delayed floral organ abscission ("skirt") phenotype, suggesting epistasis. Also, the hws transcriptome profile partially resembles those of well-known miRNA mutants hyl1-2, se-3, and ago1-27, pointing to a role in a common pathway. We thus propose HWS as a novel, F-box dependent factor involved in miRNA function.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas F-Box/metabolismo , MicroARNs/metabolismo , Arabidopsis/genética , Epistasis Genética , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Mutación/genética , Fenotipo , Transcriptoma/genética , Transgenes
6.
Genome Res ; 25(2): 246-56, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25367294

RESUMEN

The spatial arrangement of interphase chromosomes in the nucleus is important for gene expression and genome function in animals and in plants. The recently developed Hi-C technology is an efficacious method to investigate genome packing. Here we present a detailed Hi-C map of the three-dimensional genome organization of the plant Arabidopsis thaliana. We find that local chromatin packing differs from the patterns seen in animals, with kilobasepair-sized segments that have much higher intrachromosome interaction rates than neighboring regions, representing a dominant local structural feature of genome conformation in A. thaliana. These regions, which appear as positive strips on two-dimensional representations of chromatin interaction, are enriched in epigenetic marks H3K27me3, H3.1, and H3.3. We also identify more than 400 insulator-like regions. Furthermore, although topologically associating domains (TADs), which are prominent in animals, are not an obvious feature of A. thaliana genome packing, we found more than 1000 regions that have properties of TAD boundaries, and a similar number of regions analogous to the interior of TADs. The insulator-like, TAD-boundary-like, and TAD-interior-like regions are each enriched for distinct epigenetic marks and are each correlated with different gene expression levels. We conclude that epigenetic modifications, gene density, and transcriptional activity combine to shape the local packing of the A. thaliana nuclear genome.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Genómica , Análisis por Conglomerados , Biología Computacional/métodos , Epigénesis Genética , Genoma de Planta , Genómica/métodos , Histonas/metabolismo , Elementos Aisladores
7.
EMBO Rep ; 14(7): 615-21, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23661080

RESUMEN

MicroRNAs (miRNAs) originate from stemloop-forming precursor RNAs found in longer primary transcripts that often contain introns. We show that in plants, those introns, when located 3' of the stemloop, can promote mature miRNA accumulation, through a mechanism that likely operates at the level of miRNA processing or stability. Reversely, when miRNA production is reduced such as in dicer-like 1 mutants, splicing of introns that promote miRNA processing is considerably increased, pointing to a tight physical and temporal coordination of intron splicing and miRNA processing in plants. Our findings further suggest that miRNA transcripts without introns generated through alternative polyA-site usage might contribute to the differential adjustment of miRNA levels, possibly at a tissue-specific level.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Intrones , MicroARNs/genética , ARN Mensajero/genética , Empalme Alternativo , Arabidopsis/metabolismo , Secuencias Invertidas Repetidas , MicroARNs/metabolismo , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Especificidad de Órganos , Poli A/genética , Poli A/metabolismo , ARN Mensajero/metabolismo
8.
G3 (Bethesda) ; 14(3)2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38124484

RESUMEN

In this study, we aimed to systematically assess the frequency at which potentially deleterious phenotypes appear in natural populations of the outcrossing model plant Arabidopsis arenosa, and to establish their underlying genetics. For this purpose, we collected seeds from wild A. arenosa populations and screened over 2,500 plants for unusual phenotypes in the greenhouse. We repeatedly found plants with obvious phenotypic defects, such as small stature and necrotic or chlorotic leaves, among first-generation progeny of wild A. arenosa plants. Such abnormal plants were present in about 10% of maternal sibships, with multiple plants with similar phenotypes in each of these sibships, pointing to a genetic basis of the observed defects. A combination of transcriptome profiling, linkage mapping and genome-wide runs of homozygosity patterns using a newly assembled reference genome indicated a range of underlying genetic architectures associated with phenotypic abnormalities. This included evidence for homozygosity of certain genomic regions, consistent with alleles that are identical by descent being responsible for these defects. Our observations suggest that deleterious alleles with different genetic architectures are segregating at appreciable frequencies in wild A. arenosa populations.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Fenotipo , Mapeo Cromosómico , Semillas
9.
EMBO J ; 28(23): 3633-4, 2009 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-19953107

RESUMEN

MicroRNAs are 19-22 nt-long RNAs that regulate eukaryotic gene expression. They are processed from stem-loop containing precursor transcripts by RNAse III enzymes of the Dicer family. In this issue of the EMBO Journal, a study by Bologna and colleagues investigates the processing of two plant MIRNA families with unusually long precursors. Their findings suggest a non-canonical mode of biogenesis in which DCL1, the plant miRNA-producing enzyme, initiates sequential cuts close to the loop at the tip of the stem rather than at its base. It therefore requires the integrity of the upper stem in the precursor, although the structural and/or sequence features that guide DCL1 to its initial binding platform are yet to be identified. Owing to the loop-to-base processing and the unusual length of the stem, several additional small RNA species are produced before the cognate miRNA is excised, a phenomenon that might shed light on the origin of MIRNA genes.


Asunto(s)
Proteínas de Arabidopsis/genética , MicroARNs/genética , Conformación de Ácido Nucleico , Procesamiento Postranscripcional del ARN/genética , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/biosíntesis , MicroARNs/biosíntesis , Mutación , Precursores del ARN/biosíntesis , Precursores del ARN/genética , Estabilidad del ARN/genética , ARN de Planta/biosíntesis , ARN de Planta/genética , Ribonucleasa III/genética
10.
Dev Cell ; 13(1): 115-25, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17609114

RESUMEN

Many microRNAs (miRNAs) are encoded by small gene families. In a third of all conserved Arabidopsis miRNA families, members vary at two or more nucleotide positions. We have focused on the related miR159 and miR319 families, which share sequence identity at 17 of 21 nucleotides, yet affect different developmental processes through distinct targets. MiR159 regulates MYB mRNAs, while miR319 predominantly acts on TCP mRNAs. In the case of miR319, MYB targeting plays at most a minor role because miR319 expression levels and domain limit its ability to affect MYB mRNAs. In contrast, in the case of miR159, the miRNA sequence prevents effective TCP targeting. We complement these observations by identifying nucleotide positions relevant for miRNA activity with mutants recovered from a suppressor screen. Together, our findings reveal that functional specialization of miR159 and miR319 is achieved through both expression and sequence differences.


Asunto(s)
Arabidopsis/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Mutación Puntual , ARN de Planta/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Genome Biol ; 23(1): 263, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36539836

RESUMEN

BACKGROUND: Despite its conserved role on gene expression and transposable element (TE) silencing, genome-wide CG methylation differs substantially between wild Arabidopsis thaliana accessions. RESULTS: To test our hypothesis that global reduction of CG methylation would reduce epigenomic, transcriptomic, and phenotypic diversity in A. thaliana accessions, we knock out MET1, which is required for CG methylation, in 18 early-flowering accessions. Homozygous met1 mutants in all accessions suffer from common developmental defects such as dwarfism and delayed flowering, in addition to accession-specific abnormalities in rosette leaf architecture, silique morphology, and fertility. Integrated analysis of genome-wide methylation, chromatin accessibility, and transcriptomes confirms that MET1 inactivation greatly reduces CG methylation and alters chromatin accessibility at thousands of loci. While the effects on TE activation are similarly drastic in all accessions, the quantitative effects on non-TE genes vary greatly. The global expression profiles of accessions become considerably more divergent from each other after genome-wide removal of CG methylation, although a few genes with diverse expression profiles across wild-type accessions tend to become more similar in mutants. Most differentially expressed genes do not exhibit altered chromatin accessibility or CG methylation in cis, suggesting that absence of MET1 can have profound indirect effects on gene expression and that these effects vary substantially between accessions. CONCLUSIONS: Systematic analysis of MET1 requirement in different A. thaliana accessions reveals a dual role for CG methylation: for many genes, CG methylation appears to canalize expression levels, with methylation masking regulatory divergence. However, for a smaller subset of genes, CG methylation increases expression diversity beyond genetically encoded differences.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metilación de ADN , Elementos Transponibles de ADN , Cromatina/metabolismo , Regulación de la Expresión Génica de las Plantas , ADN (Citosina-5-)-Metiltransferasas/metabolismo
12.
Plant J ; 62(5): 807-16, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20230491

RESUMEN

MADS-domain transcription factors play pivotal roles in various developmental processes. The lack of simple loss-of-function phenotypes provides impediments to understand the biological function of some of the MADS-box transcription factors. Here we have characterized the potential role of the Arabidopsis thaliana AGAMOUS-LIKE6 (AGL6) gene by fusing full-length coding sequence with transcriptional activator and repressor domains and suggest a role for AGL6 in lateral organ development and flowering. Upon photoperiodic induction of flowering, AGL6 becomes expressed in abaxial and proximal regions of cauline leaf primordia, as well as the cryptic bracts subtending flowers. In developing flowers, AGL6 is detected in the proximal regions of all floral organs and in developing ovules. Converting AGL6 into a strong activator through fusion to the VP16 domain triggers bract outgrowth, implicating AGL6 in the development of bractless flowers in Arabidopsis. In addition, ectopic reproductive structures form on both bracts and flowers in gAGL6::VP16 transgenic plants, which is dependent on B and C class homeotic genes, but independent of LEAFY. Overexpression of both AGL6 and its transcriptional repressor form, AGL6::EAR, causes precocious flowering and terminal flower formation, suggesting that AGL6 suppresses the function of a floral repressor.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Flores/crecimiento & desarrollo , Proteínas de Dominio MADS/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Microscopía Electrónica de Rastreo , Óvulo Vegetal/crecimiento & desarrollo , Óvulo Vegetal/ultraestructura , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , ARN de Planta/genética
13.
Quant Plant Biol ; 2: e1, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37077216

RESUMEN

Genome editing with the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR associated protein) system allows mutagenesis of a targeted region of the genome using a Cas endonuclease and an artificial guide RNA. Both because of variable efficiency with which such mutations arise and because the repair process produces a spectrum of mutations, one needs to ascertain the genome sequence at the targeted locus for many individuals that have been subjected to mutagenesis. We provide a complete protocol for the generation of amplicons up until the identification of the exact mutations in the targeted region. CRISPR-finder can be used to process thousands of individuals in a single sequencing run. We successfully identified an ISOCHORISMATE SYNTHASE 1 mutant line in which the production of salicylic acid was impaired compared to the wild type, as expected. These features establish CRISPR-finder as a high-throughput, cost-effective and efficient genotyping method of individuals whose genomes have been targeted using the CRISPR/Cas9 system.

14.
Dev Cell ; 8(4): 517-27, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15809034

RESUMEN

Most plant microRNAs (miRNAs) have perfect or near-perfect complementarity with their targets. This is consistent with their primary mode of action being cleavage of target mRNAs, similar to that induced by perfectly complementary small interfering RNAs (siRNAs). However, there are natural targets with up to five mismatches. Furthermore, artificial siRNAs can have substantial effects on so-called off-targets, to which they have only limited complementarity. By analyzing the transcriptome of plants overexpressing different miRNAs, we have deduced a set of empirical parameters for target recognition. Compared to artificial siRNAs, authentic plant miRNAs appear to have much higher specificity, which may reflect their coevolution with the remainder of the transcriptome. We also demonstrate that miR172, previously thought to act primarily by translational repression, can efficiently guide mRNA cleavage, although the effects on steady-state levels of target transcripts are obscured by strong feedback regulation. This finding unifies the view of plant miRNA action.


Asunto(s)
MicroARNs/metabolismo , Proteínas de Plantas/metabolismo , ARN de Planta/metabolismo , Transcripción Genética , Emparejamiento Base , Secuencia de Bases , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Conformación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , ARN de Planta/genética , Reproducibilidad de los Resultados
15.
Nature ; 425(6955): 257-63, 2003 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-12931144

RESUMEN

Plants with altered microRNA metabolism have pleiotropic developmental defects, but direct evidence for microRNAs regulating specific aspects of plant morphogenesis has been lacking. In a genetic screen, we identified the JAW locus, which produces a microRNA that can guide messenger RNA cleavage of several TCP genes controlling leaf development. MicroRNA-guided cleavage of TCP4 mRNA is necessary to prevent aberrant activity of the TCP4 gene expressed from its native promoter. In addition, overexpression of wild-type and microRNA-resistant TCP variants demonstrates that mRNA cleavage is largely sufficient to restrict TCP function to its normal domain of activity. TCP genes with microRNA target sequences are found in a wide range of species, indicating that microRNA-mediated control of leaf morphogenesis is conserved in plants with very different leaf forms.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , MicroARNs/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/genética , Procesamiento Postranscripcional del ARN , Proteínas de Arabidopsis/genética , Secuencia de Bases , Secuencia Conservada , Perfilación de la Expresión Génica , Genes de Plantas/genética , MicroARNs/genética , Datos de Secuencia Molecular , Morfogénesis , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transgenes
16.
Curr Opin Plant Biol ; 56: 89-98, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32535454

RESUMEN

Breeding a crop variety to be resistant to a pathogen usually takes years. This is problematic because pathogens, with short generation times and fluid genomes, adapt quickly to overcome resistance. The triumph of the pathogen is not inevitable, however, as there are numerous examples of durable resistance, particularly in wild plants. Which factors then contribute to such resistance stability over millennia? We review current knowledge of wild and agricultural pathosystems, detailing the importance of genetic, species and spatial heterogeneity in the prevention of pathogen outbreaks. We also highlight challenges associated with increasing resistance diversity in crops, both in light of pathogen (co-)evolution and breeding practices. Historically it has been difficult to incorporate heterogeneity into agriculture due to reduced efficiency in harvesting. Recent advances implementing computer vision and automation in agricultural production may improve our ability to harvest mixed genotype and mixed species plantings, thereby increasing resistance durability.


Asunto(s)
Productos Agrícolas , Enfermedades de las Plantas , Agricultura , Cruzamiento , Productos Agrícolas/genética , Genotipo , Enfermedades de las Plantas/genética
17.
Plant J ; 53(4): 674-90, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18269576

RESUMEN

Comprehensive analysis of gene function requires the detailed examination of mutant alleles. In Arabidopsis thaliana, large collections of sequence-indexed insertion and chemical mutants provide potential loss-of-function alleles for most annotated genes. However, limitations for phenotypic analysis include gametophytic or early sporophytic lethality, and the ability to recombine mutant alleles in closely linked genes, especially those present as tandem duplications. Transgene-mediated gene silencing can overcome some of these shortcomings through tissue-specific, inducible and partial gene inactivation, or simultaneous targeting of several, sequence-related genes. In addition, gene silencing is a convenient approach in species or varieties for which exhaustive mutant collections are not yet available. Typically, gene function is reduced post-transcriptionally, effected by small RNAs that act in a sequence-specific manner by base pairing to complementary mRNA molecules. A recently introduced approach is the use of artificial microRNAs (amiRNAs). Here, we review various strategies for small RNA-based gene silencing, and describe in detail the design and application of amiRNAs in many plant species.


Asunto(s)
Arabidopsis/genética , Silenciador del Gen , MicroARNs/genética , ARN Interferente Pequeño/genética , Animales , Genes de Plantas , Humanos , Modelos Genéticos
19.
Plant Methods ; 14: 63, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30065776

RESUMEN

BACKGROUND: The model species Arabidopsis thaliana has extensive resources to investigate intraspecific trait variability and the genetic bases of ecologically relevant traits. However, the cost of equipment and software required for high-throughput phenotyping is often a bottleneck for large-scale studies, such as mutant screening or quantitative genetics analyses. Simple tools are needed for the measurement of fitness-related traits, like relative growth rate and fruit production, without investment in expensive infrastructures. Here, we describe methods that enable the estimation of biomass accumulation and fruit number from the analysis of rosette and inflorescence images taken with a regular camera. RESULTS: We developed two models to predict plant dry mass and fruit number from the parameters extracted with the analysis of rosette and inflorescence images. Predictive models were trained by sacrificing growing individuals for dry mass estimation, and manually measuring a fraction of individuals for fruit number at maturity. Using a cross-validation approach, we showed that quantitative parameters extracted from image analysis predicts more 90% of both plant dry mass and fruit number. When used on 451 natural accessions, the method allowed modeling growth dynamics, including relative growth rate, throughout the life cycle of various ecotypes. Estimated growth-related traits had high heritability (0.65 < H2 < 0.93), as well as estimated fruit number (H2 = 0.68). In addition, we validated the method for estimating fruit number with rev5, a mutant with increased flower abortion. CONCLUSIONS: The method we propose here is an application of automated computerization of plant images with ImageJ, and subsequent statistical modeling in R. It allows plant biologists to measure growth dynamics and fruit number in hundreds of individuals with simple computing steps that can be repeated and adjusted to a wide range of laboratory conditions. It is thus a flexible toolkit for the measurement of fitness-related traits in large populations of a model species.

20.
Plant Methods ; 14: 65, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30083222

RESUMEN

BACKGROUND: Our knowledge of natural genetic variation is increasing at an extremely rapid pace, affording an opportunity to come to a much richer understanding of how effects of specific genes are dependent on the genetic background. To achieve a systematic understanding of such GxG interactions, it is desirable to develop genome editing tools that can be rapidly deployed across many different genetic varieties. RESULTS: We present an efficient CRISPR/Cas9 toolbox of super module (SM) vectors. These vectors are based on a previously described fluorescence protein marker expressed in seeds allowing identification of transgene-free mutants. We have used this vector series to delete genomic regions ranging from 1.7 to 13 kb in different natural accessions of the wild plant Arabidopsis thaliana. Based on results from 53 pairs of sgRNAs targeting individual nucleotide binding site leucine-rich repeat (NLR) genes, we provide a comprehensive overview of obtaining heritable deletions. CONCLUSIONS: The SM series of CRISPR/Cas9 vectors enables the rapid generation of transgene-free, genome edited plants for a diversity of functional studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA