RESUMEN
Diseases associated with the disorders of carbohydrate and lipid metabolism are widespread in the modern world. Interaction between the cells of adipose tissue - adipocytes - and immune system cells is an essential factor in pathogenesis of such diseases. Long-term increase in the glucose and fatty acid levels leads to adipocyte hypertrophy and increased expression of pro-inflammatory cytokines and adipokines by these cells. As a result, immune cells acquire a pro-inflammatory phenotype, and new leukocytes are recruited. Inflammation of adipose tissue leads to insulin resistance and stimulates formation of atherosclerotic plaques and development of autoimmunity. New studies show that different groups of B lymphocytes play an essential role in regulation of adipose tissue inflammation. Decrease in the number of B-2 lymphocytes suppresses development of a number of metabolic diseases, whereas decreased numbers of the regulatory B lymphocytes and B-1 lymphocytes are associated with more severe pathology. Recent studies showed that adipocytes influence B lymphocyte activity both directly and by altering activity of other immune cells. These findings provide better understanding of the molecular mechanisms of human pathologies associated with impaired carbohydrate and lipid metabolism, such as type 2 diabetes mellitus.
Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedades Metabólicas , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Enfermedades Metabólicas/patología , Glucosa/metabolismo , Inflamación/metabolismo , Linfocitos B/metabolismoRESUMEN
Single-nucleotide polymorphism rs71327024 located in the human 3p21.31 locus has been associated with an elevated risk of hospitalization upon SARS-CoV-2 infection. The 3p21.31 locus contains several genes encoding chemokine receptors potentially relevant to severe COVID-19. In particular, CXCR6, which is prominently expressed in T lymphocytes, NK, and NKT cells, has been shown to be involved in the recruitment of immune cells to non-lymphoid organs in chronic inflammatory and respiratory diseases. In COVID-19, CXCR6 expression is reduced in lung resident memory T cells from patients with severe disease as compared to the control cohort with moderate symptoms. We demonstrate here that rs71327024 is located within an active enhancer that augments the activity of the CXCR6 promoter in human CD4+ T lymphocytes. The common rs71327024(G) variant makes a functional binding site for the c-Myb transcription factor, while the risk rs71327024(T) variant disrupts c-Myb binding and reduces the enhancer activity. Concordantly, c-Myb knockdown in PMA-treated Jurkat cells negates rs71327024's allele-specific effect on CXCR6 promoter activity. We conclude that a disrupted c-Myb binding site may decrease CXCR6 expression in T helper cells of individuals carrying the minor rs71327024(T) allele and thus may promote the progression of severe COVID-19 and other inflammatory pathologies.
Asunto(s)
COVID-19 , Humanos , COVID-19/genética , Hospitalización , Regiones Promotoras Genéticas , Receptores CXCR6/genética , SARS-CoV-2 , Linfocitos T Colaboradores-InductoresRESUMEN
Signaling lymphocytic activation molecule family member 1 (SLAMF1)/CD150 is a co-stimulatory receptor expressed on a variety of hematopoietic cells, in particular on mature lymphocytes activated by specific antigen, costimulation and cytokines. Changes in CD150 expression level have been reported in association with autoimmunity and with B-cell chronic lymphocytic leukemia. We characterized the core promoter for SLAMF1 gene in human B-cell lines and explored binding sites for a number of transcription factors involved in B cell differentiation and activation. Mutations of SP1, STAT6, IRF4, NF-kB, ELF1, TCF3, and SPI1/PU.1 sites resulted in significantly decreased promoter activity of varying magnitude, depending on the cell line tested. The most profound effect on the promoter strength was observed upon mutation of the binding site for Early B-cell factor 1 (EBF1). This mutation produced a 10-20 fold drop in promoter activity and pinpointed EBF1 as the master regulator of human SLAMF1 gene in B cells. We also identified three potent transcriptional enhancers in human SLAMF1 locus, each containing functional EBF1 binding sites. Thus, EBF1 interacts with specific binding sites located both in the promoter and in the enhancer regions of the SLAMF1 gene and is critical for its expression in human B cells.
Asunto(s)
Regulación de la Expresión Génica , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria/genética , Transactivadores/genética , Transcripción Genética , Linfocitos B/citología , Linfocitos B/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión , Línea Celular Tumoral , Elementos de Facilitación Genéticos , Genes Reporteros , Células HEK293 , Humanos , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Luciferasas/genética , Mutación , FN-kappa B/genética , FN-kappa B/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Cultivo Primario de Células , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Factor de Transcripción STAT6/genética , Factor de Transcripción STAT6/metabolismo , Transducción de Señal , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria/metabolismo , Factor de Transcripción Sp1/genética , Factor de Transcripción Sp1/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
The synthesis and subsequent nuclear export of non-coding RNA (ncRNA) directed by RNA polymerase (Pol) II is very sensitive to abiotic and biotic external stimuli including pathogen challenges. To assess whether stress-induced ncRNAs may suppress the nuclear export of mRNA, we exploited the ability of Agrobacterium tumefaciens to co-deliver Pol I, II and III promoter-based vectors for the transcription of short (s) ncRNAs, GFP mRNA or genomic RNA of plant viruses (Tobacco mosaic virus, TMV; or Potato virus X, PVX) into the nucleus of Nicotiana benthamiana cells. We showed that, in contrast to Pol I- and Pol III-derived sncRNAs, all tested Pol II-derived sncRNAs (U6 RNA, tRNA or artificial RNAs) resulted in decreased expression of GFP and host mRNA. The level of this inhibitory effect depended on the non-coding transcript length and promoter strength. Short coding RNA (scRNA) can also compete with mRNA for nuclear export. We showed that scRNA, an artificial 117-nt short sequence encoding Elastin-Like peptide element tandems with FLAG sequence (ELF) and the 318-nt N. benthamiana antimicrobial peptide thionin (defensin) gene efficiently decreased GFP expression. The stress-induced export of Pol II-derived sncRNA and scRNA into the cytoplasm via the mRNA export pathway may block nucleocytoplasmic traffic including the export of mRNA responsible for antivirus protection. Consistent with this model, we observed that Pol II-derived sncRNAs as well as scRNA, thionin and ELF strongly enhanced the cytoplasmic reproduction of TMV and PVX RNA.
Asunto(s)
Núcleo Celular/metabolismo , Nicotiana/genética , ARN Polimerasa II/fisiología , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Transporte Activo de Núcleo Celular , Transporte Biológico , Citoplasma/metabolismo , Proteínas Fluorescentes Verdes/análisis , Potexvirus/genética , ARN Interferente Pequeño/análisis , ARN Pequeño no Traducido/análisis , ARN Pequeño no Traducido/fisiología , ARN Viral/metabolismo , Virus del Mosaico del Tabaco/genéticaRESUMEN
Toll-like receptor 4 (TLR4) is an innate immunity receptor predominantly expressed on myeloid cells and involved in the development of various diseases, many of them with complex genetics. Here we present data on functionality of single nucleotide polymorphism rs7873784 located in the 3'-untranslated region (3'-UTR) of TLR4 gene and associated with various pathologies involving chronic inflammation. We demonstrate that TLR4 3'-UTR strongly enhanced the activity of TLR4 promoter in U937 human monocytic cell line while minor rs7873784(C) allele created a binding site for transcription factor PU.1 (encoded by SPI1 gene), a known regulator of TLR4 expression. Increased binding of PU.1 further augmented the TLR4 transcription while PU.1 knockdown or complete disruption of the PU.1 binding site abrogated the effect. We hypothesize that additional functional PU.1 site may increase TLR4 expression in individuals carrying minor C variant of rs7873784 and modulate the development of certain pathologies, such as rheumatoid arthritis and type-2 diabetes mellitus.
Asunto(s)
Artritis Reumatoide/genética , Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple/genética , Proteínas Proto-Oncogénicas/genética , Receptor Toll-Like 4/genética , Transactivadores/genética , Regiones no Traducidas 3'/genética , Alelos , Línea Celular , Línea Celular Tumoral , Células HEK293 , Humanos , Regiones Promotoras Genéticas/genética , Células U937RESUMEN
Tumor-associated antigen (TAA)-specific autoantibodies have been widely implicated in cancer diagnosis. However, cancer cell lines that are typically exploited as candidate TAA sources in immunoproteomic studies may fail to accurately represent the autoantigen-ome of lower-grade neoplasms. Here, we established an integrated strategy for the identification of disease-relevant TAAs in thyroid neoplasia, which combined NRASQ61R oncogene expression in non-tumorous thyroid Nthy-ori 3-1â¯cells with a multi-dimensional proteomic technique DISER that consisted of profiling NRASQ61R-induced proteins using 2-dimensional difference gel electrophoresis (2D-DIGE) coupled with serological proteome analysis (SERPA) of the TAA repertoire of patients with thyroid encapsulated follicular-patterned/RAS-like phenotype (EFP/RLP) tumors. We identified several candidate cell-based (nicotinamide phosphoribosyltransferase NAMPT, glutamate dehydrogenase GLUD1, and glutathione S-transferase omega-1 GSTO1) and autoantibody (fumarate hydratase FH, calponin-3 CNN3, and pyruvate kinase PKM autoantibodies) biomarkers, including NRASQ61R-induced TAA phosphoglycerate kinase 1 PGK1. Meta-profiling of the reactivity of the identified autoantibodies across an independent SERPA series implicated the PKM autoantibody as a histological phenotype-independent biomarker of thyroid malignancy (11/38 (29%) patients with overtly malignant and uncertain malignant potential (UMP) tumors vs 0/22 (pâ¯=â¯0.0046) and 0/20 (pâ¯=â¯0.011) patients with non-invasive EFP/RLP tumors and healthy controls, respectively). PGK1 and CNN3 autoantibodies were identified as EFP/RLP-specific biomarkers, potentially suitable for further discriminating tumors with different malignant potential (PGK1: 7/22 (32%) patients with non-invasive EFP/RLP tumors vs 0/38 (pâ¯=â¯0.00044) and 0/20 (pâ¯=â¯0.0092) patients with other tumors and healthy controls, respectively; СNN3: 9/29 (31%) patients with malignant and borderline EFP/RLP tumors vs 0/31 (pâ¯=â¯0.00068) and 0/20 (pâ¯=â¯0.0067) patients with other tumors and healthy controls, respectively). The combined use of PKM, CNN3, and PGK1 autoantibodies allowed the reclassification of malignant/UMP tumor risk in 19/41 (46%) of EFP/RLP tumor patients. Taken together, we established an experimental pipeline DISER for the concurrent identification of cell-based and TAA biomarkers. The combination of DISER with in vitro oncogene expression allows further targeted identification of oncogene-induced TAAs. Using this integrated approach, we identified candidate autoantibody biomarkers that might be of value for differential diagnostic purposes in thyroid neoplasia.
Asunto(s)
Autoanticuerpos/metabolismo , GTP Fosfohidrolasas/genética , Proteínas de la Membrana/genética , Proteómica/métodos , Neoplasias de la Tiroides/diagnóstico , Biomarcadores de Tumor/metabolismo , Estudios de Casos y Controles , Línea Celular Tumoral , Detección Precoz del Cáncer , Femenino , GTP Fosfohidrolasas/inmunología , Humanos , Proteínas de la Membrana/inmunología , Mutación , Neoplasias de la Tiroides/inmunologíaRESUMEN
CD58 is expressed on the surface of antigen-presenting cells, including B-cells, and provides co-stimulation to regulatory T-cells (Treg) through CD2 receptor binding. Tregs appear to be essential suppressors of tissue-specific autoimmune responses. Thereby, CD58 plays protective role in multiple sclerosis (MS) and CD58 was identified among several loci associated with MS susceptibility. Minor (C) variant of the single-nucleotide polymorphism (SNP) rs1335532 is associated with lower MS risk according to genome-wide association studies (GWAS) and its presence correlates with higher CD58 mRNA levels in MS patients. We found that genomic region containing rs1335532 has enhancer properties and can significantly boost the CD58 promoter activity in lymphoblast cells. Using bioinformatics and pull-down assay we found that the protective (C) rs1335532 allele created functional binding site for ASCL2 transcription factor, a target of the Wnt signaling pathway. Both in B-lymphoblastoid cell lines and in primary B-cells, as well as in a monocytic cell line, activation of Wnt signaling resulted in an increased CD58 promoter activity in the presence of the protective but not the risk allele of rs1335532, whereas ASCL2 knockdown abrogated this effect. In summary, our results suggest that ASCL2 mediates the protective function of rs1335532 minor (C) allele in MS.
Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Antígenos CD58/genética , Esclerosis Múltiple/genética , Polimorfismo de Nucleótido Simple , Regulación hacia Arriba , Alelos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Sitios de Unión , Antígenos CD58/química , Línea Celular Tumoral , Biología Computacional/métodos , Elementos de Facilitación Genéticos , Femenino , Regulación Neoplásica de la Expresión Génica , Estudios de Asociación Genética , Humanos , Masculino , Esclerosis Múltiple/metabolismo , Regiones Promotoras Genéticas , Vía de Señalización WntRESUMEN
IL2RA gene encodes the alpha subunit of a high-affinity receptor for interleukin-2 which is expressed by several distinct populations of lymphocytes involved in autoimmune processes. A large number of polymorphic alleles of the IL2RA locus are associated with the development of various autoimmune diseases. With bioinformatics analysis we the dissected the first intron of the IL2RA gene and selected several single nucleotide polymorphisms (SNPs) that may influence the regulation of the IL2RA gene in cell types relevant to autoimmune pathology. We described five enhancers containing the selected SNPs that stimulated activity of the IL2RA promoter in a cell-type specific manner, and tested the effect of specific SNP alleles on activity of the respective enhancers (E1 to E5, labeled according to the distance to the promoter). The E4 enhancer with minor T variant of rs61839660 SNP demonstrated reduced activity due to disrupted binding of MEF2A/C transcription factors (TFs). Neither rs706778 nor rs706779 SNPs, both associated with a number of autoimmune diseases, had any effect on the activity of the enhancer E2. However, rare variants of several SNPs (rs139767239, rs115133228, rs12722502, rs12722635) genetically linked to either rs706778 and/or rs706779 significantly influenced the activity of E1, E3 and E5 enhancers, presumably by disrupting EBF1, GABPA and ELF1 binding sites.
Asunto(s)
Subunidad alfa del Receptor de Interleucina-2/genética , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/inmunología , Línea Celular , Elementos de Facilitación Genéticos , Predisposición Genética a la Enfermedad , Humanos , Intrones , Células Jurkat , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Factores de Transcripción/metabolismoRESUMEN
We studied functional effect of rs12722489 single nucleotide polymorphism located in the first intron of human IL2RA gene on transcriptional regulation. This polymorphism is associated with multiple autoimmune conditions (rheumatoid arthritis, multiple sclerosis, Crohn's disease, and ulcerative colitis). Analysis in silico suggested significant difference in the affinity of estrogen receptor (ER) binding site between alternative allelic variants, with stronger predicted affinity for the risk (G) allele. Electrophoretic mobility shift assay showed that purified human ERα bound only G variant of a 32-bp genomic sequence containing rs12722489. Chromatin immunoprecipitation demonstrated that endogenous human ERα interacted with rs12722489 genomic region in vivo and DNA pull-down assay confirmed differential allelic binding of amplified 189-bp genomic fragments containing rs12722489 with endogenous human ERα. In a luciferase reporter assay, a kilobase-long genomic segment containing G but not A allele of rs12722489 demonstrated enhancer properties in MT-2 cell line, an HTLV-1 transformed human cell line with a regulatory T cell phenotype.
Asunto(s)
Receptor alfa de Estrógeno/genética , Subunidad alfa del Receptor de Interleucina-2/genética , Polimorfismo de Nucleótido Simple , Elementos de Respuesta , Linfocitos T Reguladores/metabolismo , Alelos , Secuencia de Bases , Sitios de Unión , Línea Celular Transformada , Inmunoprecipitación de Cromatina , Ensayo de Cambio de Movilidad Electroforética , Receptor alfa de Estrógeno/metabolismo , Regulación de la Expresión Génica , Genes Reporteros , Virus Linfotrópico T Tipo 1 Humano/genética , Humanos , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Intrones , Luciferasas/genética , Luciferasas/metabolismo , Unión Proteica , Linfocitos T Reguladores/citologíaRESUMEN
Many types of chemotherapeutic agents induce of DNA-damage that is accompanied by activation of p53 tumor suppressor, a key regulator of tumor development and progression. In our previous study we demonstrated that p53 could repress CXCR5 chemokine receptor gene in MCF-7 breast cancer cells via attenuation of NFkB activity. In this work we aimed to determine individual roles of p53 family members in the regulation of CXCR5 gene expression under genotoxic stress. DNA-alkylating agent methyl methanesulfonate caused a reduction in CXCR5 expression not only in parental MCF-7 cells but also in MCF-7-p53off cells with CRISPR/Cas9-mediated inactivation of the p53 gene. Since p53 knockout was associated with elevated expression of its p63 and p73 homologues, we knocked out p63 using CRISPR/Cas9 system and knocked down p73 using specific siRNA. The CXCR5 promoter activity, CXCR5 expression and CXCL13-directed migration in MCF-7 cells with inactivation of all three p53 family genes were completely insensitive to genotoxic stress, while pairwise p53+p63 or p53+p73 inactivation resulted in partial effects. Using deletion analysis and site-directed mutagenesis, we demonstrated that effects of NFkB on the CXCR5 promoter inversely correlated with p63 and p73 levels. Thus, all three p53 family members mediate the effects of genotoxic stress on the CXCR5 promoter using the same mechanism associated with attenuation of NFkB activity. Understanding of this mechanism could facilitate prognosis of tumor responses to chemotherapy.
Asunto(s)
Daño del ADN , Regulación Neoplásica de la Expresión Génica , Proteínas de la Membrana/fisiología , Receptores CXCR5/genética , Proteína Tumoral p73/fisiología , Proteína p53 Supresora de Tumor/fisiología , Sistemas CRISPR-Cas , Femenino , Humanos , Células MCF-7 , Metilmetanosulfonato/farmacología , FN-kappa B/fisiología , Regiones Promotoras GenéticasRESUMEN
Chemokine receptor CXCR5 is highly expressed in B-cells and under normal conditions is involved in their migration to specific areas of secondary lymphoid organs. B-cells are known to play an important role in various autoimmune diseases including multiple sclerosis (MS) where areas of demyelinating lesions attract B-cells by overexpressing CXCL13, the CXCR5 ligand. In this study, we aimed to determine the functional significance of single-nucleotide polymorphism rs630923 (A/C), which is located in cxcr5 gene promoter, and its common allele is associated with increased risk of MS. Using bioinformatics and pull-down assay in B-lymphoblastic cell lines, we showed that protective minor rs630923 "A" allele created functional binding site for MEF2C transcription factor. Elevated MEF2C expression in B-cells correlated with reduced activity of cxcr5 promoter containing rs630923 "A" allele. This effect that was fully neutralized by MEF2C-directed siRNA may mechanistically explain the protective role of the rs630923 minor allele in MS. Using site-directed mutagenesis of the cxcr5 gene promoter, we were unable to find any experimental evidence for the previously proposed role of NFκB transcription factors in rs630923-mediated CXCR5 promoter regulation. Thus, our results identify MEF2C as a possible mediator of protective function of the rs630923 "A" allele in MS.
RESUMEN
Elevated expression of chemokine receptors in tumors has been reported in many instances and is related to a number of survival advantages for tumor cells including abnormal activation of prosurvival intracellular pathways. In this work we demonstrated an inverse correlation between expression levels of p53 tumor suppressor and CXCR5 chemokine receptor in MCF-7 human breast cancer cell line. Lentiviral transduction of MCF-7 cells with p53 shRNA led to elevated CXCR5 at both mRNA and protein levels. Functional activity of CXCR5 in p53-knockdown MCF-7 cells was also increased as shown by activation of target gene expression and chemotaxis in response to B-lymphocyte chemoattractant CXCL13. Using deletion analysis and site-directed mutagenesis of the cxcr5 gene promoter and enhancer elements, we demonstrated that p53 appears to act upon cxcr5 promoter indirectly, by repressing the activity of NFκB transcription factors. Using chromatin immunoprecipitation and reporter gene analysis, we further demonstrated that p65/RelA was able to bind the cxcr5 promoter in p53-dependent manner and to directly transactivate it when overexpressed. Through the described mechanism, elevated CXCR5 expression may contribute to abnormal cell survival and migration in breast tumors that lack functional p53.
Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Regulación Neoplásica de la Expresión Génica , Receptores CXCR5/genética , Proteína p53 Supresora de Tumor/metabolismo , Quimiocina CXCL13/metabolismo , Quimiotaxis/genética , Quimiotaxis/inmunología , Biología Computacional , Elementos de Facilitación Genéticos , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Células MCF-7 , FN-kappa B/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Receptores CXCR5/metabolismo , Elementos de Respuesta , Transducción de Señal , Activación Transcripcional , Proteína p53 Supresora de Tumor/genéticaRESUMEN
CONTEXT: Current methods of preoperative diagnostics frequently fail to discriminate between benign and malignant thyroid neoplasms. In encapsulated follicular-patterned tumors (EnFPT), this discrimination is challenging even using histopathological analysis. Autoantibody response against tumor-associated antigens is a well-documented phenomenon with prominent diagnostic potential; however, autoantigenicity of thyroid tumors remains poorly explored. OBJECTIVES: Objectives were exploration of tumor-associated antigen repertoire of thyroid tumors and identification of candidate autoantibody biomarkers capable of discrimination between benign and malignant thyroid neoplasms. DESIGN, SETTING, AND PATIENTS: Proteins isolated from FTC-133 cells were subjected to two-dimensional Western blotting using pooled serum samples of patients originally diagnosed with either papillary thyroid carcinoma (PTC) or EnFPT represented by apparently benign follicular thyroid adenomas, as well as healthy individuals. Immunoreactive proteins were identified using liquid chromatography-tandem mass-spectrometry. Pathological reassessment of EnFPT was performed applying nonconservative criteria for capsular invasion and significance of focal PTC nuclear changes (PTC-NCs). Recombinant T-complex protein 1 subunitζ (TCP-1ζ) was used to examine an expanded serum sample set of patients with various thyroid neoplasms (n = 89) for TCP-1ζ autoantibodies. All patients were included in tertiary referral centers. RESULTS: A protein demonstrating a distinct pattern of EnFPT-specific seroreactivity was identified as TCP-1ζ protein. A subsequent search for clinicopathological correlates of TCP-1ζ seroreactivity revealed nonclassical capsular invasion or focal PTC-NC in all TCP-1ζ antibody-positive cases. Further studies in an expanded sample set confirmed the specificity of TCP-1ζ autoantibodies to malignant EnFPT. CONCLUSIONS: We identified TCP-1ζ autoantibodies as a potential biomarker for presurgical discrimination between benign and malignant encapsulated follicular-patterned thyroid tumors. Our results suggest the use of nonconservative morphological criteria for diagnosis of malignant EnFPT in biomarker identification studies and provide a peculiar example of uncovering the diagnostic potential of a candidate biomarker using incorporation of pathological reassessment in the pipeline of immunoproteomic research.