Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(25): e2218049120, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37307471

RESUMEN

Environmental hypoxia challenges female reproductive physiology in placental mammals, increasing rates of gestational complications. Adaptation to high elevation has limited many of these effects in humans and other mammals, offering potential insight into the developmental processes that lead to and protect against hypoxia-related gestational complications. However, our understanding of these adaptations has been hampered by a lack of experimental work linking the functional, regulatory, and genetic underpinnings of gestational development in locally adapted populations. Here, we dissect high-elevation adaptation in the reproductive physiology of deer mice (Peromyscus maniculatus), a rodent species with an exceptionally broad elevational distribution that has emerged as a model for hypoxia adaptation. Using experimental acclimations, we show that lowland mice experience pronounced fetal growth restriction when challenged with gestational hypoxia, while highland mice maintain normal growth by expanding the compartment of the placenta that facilitates nutrient and gas exchange between gestational parent and fetus. We then use compartment-specific transcriptome analyses to show that adaptive structural remodeling of the placenta is coincident with widespread changes in gene expression within this same compartment. Genes associated with fetal growth in deer mice significantly overlap with genes involved in human placental development, pointing to conserved or convergent pathways underlying these processes. Finally, we overlay our results with genetic data from natural populations to identify candidate genes and genomic features that contribute to these placental adaptations. Collectively, these experiments advance our understanding of adaptation to hypoxic environments by revealing physiological and genetic mechanisms that shape fetal growth trajectories under maternal hypoxia.


Asunto(s)
Peromyscus , Placenta , Embarazo , Humanos , Animales , Femenino , Aclimatación , Desarrollo Fetal , Hipoxia
2.
Am J Physiol Regul Integr Comp Physiol ; 326(4): R297-R310, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38372126

RESUMEN

The cold and hypoxic conditions at high altitude necessitate high metabolic O2 demands to support thermogenesis while hypoxia reduces O2 availability. Skeletal muscles play key roles in thermogenesis, but our appreciation of muscle plasticity and adaptation at high altitude has been hindered by past emphasis on only a small number of muscles. We examined this issue in deer mice (Peromyscus maniculatus). Mice derived from both high-altitude and low-altitude populations were born and raised in captivity and then acclimated as adults to normoxia or hypobaric hypoxia (12 kPa O2 for 6-8 wk). Maximal activities of citrate synthase (CS), cytochrome c oxidase (COX), ß-hydroxyacyl-CoA dehydrogenase (HOAD), hexokinase (HK), pyruvate kinase (PK), and lactate dehydrogenase (LDH) were measured in 20 muscles involved in shivering, locomotion, body posture, ventilation, and mastication. Principal components analysis revealed an overall difference in muscle phenotype between populations but no effect of hypoxia acclimation. High-altitude mice had greater activities of mitochondrial enzymes and/or lower activities of PK or LDH across many (but not all) respiratory, limb, core and mastication muscles compared with low-altitude mice. In contrast, chronic hypoxia had very few effects across muscles. Further examination of CS in the gastrocnemius showed that population differences in enzyme activity stemmed from differences in protein abundance and mRNA expression but not from population differences in CS amino acid sequence. Overall, our results suggest that evolved increases in oxidative capacity across many skeletal muscles, at least partially driven by differences in transcriptional regulation, may contribute to high-altitude adaptation in deer mice.NEW & NOTEWORTHY Most previous studies of muscle plasticity and adaptation in high-altitude environments have focused on a very limited number of skeletal muscles. Comparing high-altitude versus low-altitude populations of deer mice, we show that a large number of muscles involved in shivering, locomotion, body posture, ventilation, and mastication exhibit greater mitochondrial enzyme activities in the high-altitude population. Therefore, evolved increases in mitochondrial oxidative capacity across skeletal muscles contribute to high-altitude adaptation.


Asunto(s)
Altitud , Peromyscus , Animales , Peromyscus/fisiología , Hipoxia/metabolismo , Músculo Esquelético/metabolismo , Aclimatación , Fenotipo
3.
Mol Ecol ; 32(13): 3483-3496, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37073620

RESUMEN

Phenotypic plasticity can play an important role in the ability of animals to tolerate environmental stress, but the nature and magnitude of plastic responses are often specific to the developmental timing of exposure. Here, we examine changes in gene expression in the diaphragm of highland deer mice (Peromyscus maniculatus) in response to hypoxia exposure at different stages of development. In highland deer mice, developmental plasticity in diaphragm function may mediate changes in several respiratory traits that influence aerobic metabolism and performance under hypoxia. We generated RNAseq data from diaphragm tissue of adult deer mice exposed to (1) life-long hypoxia (before conception to adulthood), (2) post-natal hypoxia (birth to adulthood), (3) adult hypoxia (6-8 weeks only during adulthood) or (4) normoxia. We found five suites of co-regulated genes that are differentially expressed in response to hypoxia, but the patterns of differential expression depend on the developmental timing of exposure. We also identified four transcriptional modules that are associated with important respiratory traits. Many of the genes in these transcriptional modules bear signatures of altitude-related selection, providing an indirect line of evidence that observed changes in gene expression may be adaptive in hypoxic environments. Our results demonstrate the importance of developmental stage in determining the phenotypic response to environmental stressors.


Asunto(s)
Hipoxia , Peromyscus , Animales , Peromyscus/genética , Hipoxia/metabolismo , Respiración , Adaptación Fisiológica/genética , Altitud
4.
J Exp Biol ; 226(19)2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37680181

RESUMEN

Thermoregulatory performance can be modified through changes in various subordinate traits, but the rate and magnitude of change in these traits is poorly understood. We investigated flexibility in traits that affect thermal balance between black-capped chickadees (Poecile atricapillus) acclimated for 6 weeks to cold (-5°C) or control (23°C) environments (n=7 per treatment). We made repeated measurements of basal and summit metabolic rates via flow-through respirometry and of body composition using quantitative magnetic resonance of live birds. At the end of the acclimation period, we measured thermal conductance of the combined feathers and skins. Cold-acclimated birds had a higher summit metabolic rate, reflecting a greater capacity for endogenous heat generation, and an increased lean mass. However, birds did not alter their thermal conductance. These results suggest that chickadees respond to cold stress by increasing their capacity for heat production rather than increasing heat retention, an energetically expensive strategy.

5.
J Hered ; 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38088446

RESUMEN

The Mojave poppy bee, Perdita meconis Griswold (Hymenoptera: Anthophila: Andrenidae), is a species of conservation concern that is restricted to the eastern Mojave Desert of North America. It is a specialist pollinator of two poppy genera, Arctomecon and Argemone (Papaveraceae), and is being considered for listing under the US Endangered Species Act along with one of its pollinator hosts, the Las Vegas bearpoppy (Arctomecon californica). Here, we present a near chromosome-level genome of the Mojave poppy bee to provide a genomic resource that will aid conservation efforts and future research. We isolated DNA from a single, small (<7 mm), male specimen collected using non-ideal preservation methods then performed whole-genome sequencing using PacBio HiFi technology. After quality and contaminant filtering, the final draft genome assembly is 327 Mb, with an N50 length of 17.5 Mb. Annotated repetitive elements compose 37.3% of the genome, although a large proportion (24.87%) of those are unclassified repeats. Additionally, we annotated 18,245 protein-coding genes and 19,433 transcripts. This genome represents one of only a few genomes from the large bee family Andrenidae and one of only a few genomes for pollinator specialists. We highlight both the potential of this genome as a resource for future research, and how high-quality genomes generated from small, non-ideal (in terms of preservation) specimens could facilitate biodiversity genomics.

6.
Mol Biol Evol ; 38(10): 4286-4300, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34037784

RESUMEN

When species are continuously distributed across environmental gradients, the relative strength of selection and gene flow shape spatial patterns of genetic variation, potentially leading to variable levels of differentiation across loci. Determining whether adaptive genetic variation tends to be structured differently than neutral variation along environmental gradients is an open and important question in evolutionary genetics. We performed exome-wide population genomic analysis on deer mice sampled along an elevational gradient of nearly 4,000 m of vertical relief. Using a combination of selection scans, genotype-environment associations, and geographic cline analyses, we found that a large proportion of the exome has experienced a history of altitude-related selection. Elevational clines for nearly 30% of these putatively adaptive loci were shifted significantly up- or downslope of clines for loci that did not bear similar signatures of selection. Many of these selection targets can be plausibly linked to known phenotypic differences between highland and lowland deer mice, although the vast majority of these candidates have not been reported in other studies of highland taxa. Together, these results suggest new hypotheses about the genetic basis of physiological adaptation to high altitude, and the spatial distribution of adaptive genetic variation along environmental gradients.


Asunto(s)
Flujo Génico , Peromyscus , Adaptación Fisiológica/genética , Altitud , Animales , Variación Genética , Genética de Población , Peromyscus/genética
7.
J Exp Biol ; 225(2)2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34913467

RESUMEN

Physiological systems often have emergent properties but the effects of genetic variation on physiology are often unknown, which presents a major challenge to understanding the mechanisms of phenotypic evolution. We investigated whether genetic variants in haemoglobin (Hb) that contribute to high-altitude adaptation in deer mice (Peromyscus maniculatus) are associated with evolved changes in the control of breathing. We created F2 inter-population hybrids of highland and lowland deer mice to test for phenotypic associations of α- and ß-globin variants on a mixed genetic background. Hb genotype had expected effects on Hb-O2 affinity that were associated with differences in arterial O2 saturation in hypoxia. However, high-altitude genotypes were also associated with breathing phenotypes that should contribute to enhancing O2 uptake in hypoxia. Mice with highland α-globin exhibited a more effective breathing pattern, with highland homozygotes breathing deeper but less frequently across a range of inspired O2, and this difference was comparable to the evolved changes in breathing pattern in deer mouse populations native to high altitude. The ventilatory response to hypoxia was augmented in mice that were homozygous for highland ß-globin. The association of globin variants with variation in breathing phenotypes could not be recapitulated by acute manipulation of Hb-O2 affinity, because treatment with efaproxiral (a synthetic drug that acutely reduces Hb-O2 affinity) had no effect on breathing in normoxia or hypoxia. Therefore, adaptive variation in Hb may have unexpected effects on physiology in addition to the canonical function of this protein in circulatory O2 transport.


Asunto(s)
Altitud , Peromyscus , Animales , Variación Genética , Hemoglobinas/genética , Hipoxia/genética , Ratones , Oxígeno/metabolismo , Peromyscus/genética , Respiración
8.
PLoS Genet ; 15(11): e1008420, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31697676

RESUMEN

Evolutionary adaptation to extreme environments often requires coordinated changes in multiple intersecting physiological pathways, but how such multi-trait adaptation occurs remains unresolved. Transcription factors, which regulate the expression of many genes and can simultaneously alter multiple phenotypes, may be common targets of selection if the benefits of induced changes outweigh the costs of negative pleiotropic effects. We combined complimentary population genetic analyses and physiological experiments in North American deer mice (Peromyscus maniculatus) to examine links between genetic variation in transcription factors that coordinate physiological responses to hypoxia (hypoxia-inducible factors, HIFs) and multiple physiological traits that potentially contribute to high-altitude adaptation. First, we sequenced the exomes of 100 mice sampled from different elevations and discovered that several SNPs in the gene Epas1, which encodes the oxygen sensitive subunit of HIF-2α, exhibited extreme allele frequency differences between highland and lowland populations. Broader geographic sampling confirmed that Epas1 genotype varied predictably with altitude throughout the western US. We then discovered that Epas1 genotype influences heart rate in hypoxia, and the transcriptomic responses to hypoxia (including HIF targets and genes involved in catecholamine signaling) in the heart and adrenal gland. Finally, we used a demographically-informed selection scan to show that Epas1 variants have experienced a history of spatially varying selection, suggesting that differences in cardiovascular function and gene regulation contribute to high-altitude adaptation. Our results suggest a mechanism by which Epas1 may aid long-term survival of high-altitude deer mice and provide general insights into the role that highly pleiotropic transcription factors may play in the process of environmental adaptation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Fenómenos Fisiológicos Cardiovasculares/genética , Peromyscus/genética , Selección Genética/genética , Adaptación Fisiológica/genética , Altitud , Mal de Altura/genética , Animales , Genética de Población , Genómica , Frecuencia Cardíaca , Humanos , Ratones , Peromyscus/fisiología , Polimorfismo de Nucleótido Simple
9.
Mol Biol Evol ; 37(8): 2309-2321, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32243546

RESUMEN

Aerobic performance is tied to fitness as it influences an animal's ability to find food, escape predators, or survive extreme conditions. At high altitude, where low O2 availability and persistent cold prevail, maximum metabolic heat production (thermogenesis) is an aerobic performance trait that is closely linked to survival. Understanding how thermogenesis evolves to enhance survival at high altitude will yield insight into the links between physiology, performance, and fitness. Recent work in deer mice (Peromyscus maniculatus) has shown that adult mice native to high altitude have higher thermogenic capacities under hypoxia compared with lowland conspecifics, but that developing high-altitude pups delay the onset of thermogenesis. This finding suggests that natural selection on thermogenic capacity varies across life stages. To determine the mechanistic cause of this ontogenetic delay, we analyzed the transcriptomes of thermoeffector organs-brown adipose tissue and skeletal muscle-in developing deer mice native to low and high altitude. We demonstrate that the developmental delay in thermogenesis is associated with adaptive shifts in the expression of genes involved in nervous system development, fuel/O2 supply, and oxidative metabolism pathways. Our results demonstrate that selection has modified the developmental trajectory of the thermoregulatory system at high altitude and has done so by acting on the regulatory systems that control the maturation of thermoeffector tissues. We suggest that the cold and hypoxic conditions of high altitude force a resource allocation tradeoff, whereby limited energy is allocated to developmental processes such as growth, versus active thermogenesis, during early development.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Peromyscus/crecimiento & desarrollo , Peromyscus/genética , Selección Genética , Termogénesis/genética , Altitud , Animales , Femenino , Redes Reguladoras de Genes , Masculino , Peromyscus/metabolismo , Transcriptoma
10.
J Hered ; 112(4): 313-327, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33860294

RESUMEN

A current challenge in the fields of evolutionary, ecological, and conservation genomics is balancing production of large-scale datasets with additional training often required to handle such datasets. Thus, there is an increasing need for conservation geneticists to continually learn and train to stay up-to-date through avenues such as symposia, meetings, and workshops. The ConGen meeting is a near-annual workshop that strives to guide participants in understanding population genetics principles, study design, data processing, analysis, interpretation, and applications to real-world conservation issues. Each year of ConGen gathers a diverse set of instructors, students, and resulting lectures, hands-on sessions, and discussions. Here, we summarize key lessons learned from the 2019 meeting and more recent updates to the field with a focus on big data in conservation genomics. First, we highlight classical and contemporary issues in study design that are especially relevant to working with big datasets, including the intricacies of data filtering. We next emphasize the importance of building analytical skills and simulating data, and how these skills have applications within and outside of conservation genetics careers. We also highlight recent technological advances and novel applications to conservation of wild populations. Finally, we provide data and recommendations to support ongoing efforts by ConGen organizers and instructors-and beyond-to increase participation of underrepresented minorities in conservation and eco-evolutionary sciences. The future success of conservation genetics requires both continual training in handling big data and a diverse group of people and approaches to tackle key issues, including the global biodiversity-loss crisis.


Asunto(s)
Macrodatos , Conservación de los Recursos Naturales , Evolución Biológica , Genética de Población , Genómica , Humanos
11.
Mol Biol Evol ; 36(11): 2536-2547, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31297530

RESUMEN

Knowledge of mutation rates is crucial for calibrating population genetics models of demographic history in units of years. However, mutation rates remain challenging to estimate because of the need to identify extremely rare events. We estimated the nuclear mutation rate in wolves by identifying de novo mutations in a pedigree of seven wolves. Putative de novo mutations were discovered by whole-genome sequencing and were verified by Sanger sequencing of parents and offspring. Using stringent filters and an estimate of the false negative rate in the remaining observable genome, we obtain an estimate of ∼4.5 × 10-9 per base pair per generation and provide conservative bounds between 2.6 × 10-9 and 7.1 × 10-9. Although our estimate is consistent with recent mutation rate estimates from ancient DNA (4.0 × 10-9 and 3.0-4.5 × 10-9), it suggests a wider possible range. We also examined the consequences of our rate and the accompanying interval for dating several critical events in canid demographic history. For example, applying our full range of rates to coalescent models of dog and wolf demographic history implies a wide set of possible divergence times between the ancestral populations of dogs and extant Eurasian wolves (16,000-64,000 years ago) although our point estimate indicates a date between 25,000 and 33,000 years ago. Aside from one study in mice, ours provides the only direct mammalian mutation rate outside of primates and is likely to be vital to future investigations of mutation rate evolution.

12.
Mol Ecol ; 29(9): 1589-1591, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32286714

RESUMEN

One of the most enduring surprises about the genetic history of Late Pleistocene populations is that continuity is often disturbed by upheaval. In fact, studies that support population continuity are increasingly rare in humans, a variety of vertebrate taxa, and vascular plants (Hofreiter & Stewart 2009; Burbrink et al. 2016). Perhaps such continuity should not be expected as the Pleistocene is marked by episodes of climate change, glaciation and the invasions of humans into previously isolated areas. Although fossils are one of the primary sources for inferring population continuity, a problem with fossil material is that, even if similar morphological forms might exist in a place over time, they may not be from the same genetic lineage. There are now readily available methods to assess genetic continuity solely from DNA found in fossil material, provided the record is fairly continuous. In a From the Cover article in this issue of Molecular Ecology, Loog et al. (2020) apply some of these readily available methods to analyse mitochondrial genomes and model the demography of wolves over the last 50,000 years.


Asunto(s)
Lobos/genética , Animales , Cambio Climático , ADN Antiguo , ADN Mitocondrial , Fósiles , Humanos
13.
Mol Biol Evol ; 35(5): 1190-1209, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29688543

RESUMEN

Pigmentation is often used to understand how natural selection affects genetic variation in wild populations since it can have a simple genetic basis, and can affect a variety of fitness-related traits (e.g., camouflage, thermoregulation, and sexual display). In gray wolves, the K locus, a ß-defensin gene, causes black coat color via a dominantly inherited KB allele. The allele is derived from dog-wolf hybridization and is at high frequency in North American wolf populations. We designed a DNA capture array to probe the geographic origin, age, and number of introgression events of the KB allele in a panel of 331 wolves and 20 dogs. We found low diversity in KB, but not ancestral ky, wolf haplotypes consistent with a selective sweep of the black haplotype across North America. Further, North American wolf KB haplotypes are monophyletic, suggesting that a single adaptive introgression from dogs to wolves most likely occurred in the Northwest Territories or Yukon. We use a new analytical approach to date the origin of the KB allele in Yukon wolves to between 1,598 and 7,248 years ago, suggesting that introgression with early Native American dogs was the source. Using population genetic simulations, we show that the K locus is undergoing natural selection in four wolf populations. We find evidence for balancing selection, specifically in Yellowstone wolves, which could be a result of selection for enhanced immunity in response to distemper. With these data, we demonstrate how the spread of an adaptive variant may have occurred across a species' geographic range.


Asunto(s)
Color del Cabello/genética , Selección Genética , Lobos/genética , beta-Defensinas/genética , Animales , Simulación por Computador , Perros , Frecuencia de los Genes , Variación Genética , Haplotipos , Homocigoto , América del Norte
14.
Genome Res ; 26(2): 163-73, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26680994

RESUMEN

The gray wolf (Canis lupus) is a widely distributed top predator and ancestor of the domestic dog. To address questions about wolf relationships to each other and dogs, we assembled and analyzed a data set of 34 canine genomes. The divergence between New and Old World wolves is the earliest branching event and is followed by the divergence of Old World wolves and dogs, confirming that the dog was domesticated in the Old World. However, no single wolf population is more closely related to dogs, supporting the hypothesis that dogs were derived from an extinct wolf population. All extant wolves have a surprisingly recent common ancestry and experienced a dramatic population decline beginning at least ∼30 thousand years ago (kya). We suggest this crisis was related to the colonization of Eurasia by modern human hunter-gatherers, who competed with wolves for limited prey but also domesticated them, leading to a compensatory population expansion of dogs. We found extensive admixture between dogs and wolves, with up to 25% of Eurasian wolf genomes showing signs of dog ancestry. Dogs have influenced the recent history of wolves through admixture and vice versa, potentially enhancing adaptation. Simple scenarios of dog domestication are confounded by admixture, and studies that do not take admixture into account with specific demographic models are problematic.


Asunto(s)
Perros/genética , Lobos/genética , Animales , Teorema de Bayes , ADN Mitocondrial/genética , Femenino , Genoma , Hibridación Genética , Masculino , Cadenas de Markov , Modelos Genéticos , Filogenia , Polimorfismo de Nucleótido Simple , Análisis de Componente Principal , Análisis de Secuencia de ADN
15.
Mol Ecol ; 28(8): 1866-1876, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30830713

RESUMEN

Understanding the links between genetic variation and fitness in natural populations is a central goal of evolutionary genetics. This monumental task spans the fields of classical and molecular genetics, population genetics, biochemistry, physiology, developmental biology, and ecology. Advances to our molecular and developmental toolkits are facilitating integrative approaches across these traditionally separate fields, providing a more complete picture of the genotype-phenotype map in natural and non-model systems. Here, we summarize research presented at the first annual symposium of the UNVEIL Network, an NSF-funded collaboration between the University of Montana and the University of Nebraska, Lincoln, which took place from the 1st to the 3rd of June, 2018. We discuss how this body of work advances basic evolutionary science, what it implies for our ability to predict evolutionary change, and how it might inform novel conservation strategies.


Asunto(s)
Ecología , Aptitud Genética , Selección Genética/genética , Animales , Evolución Molecular , Variación Genética/genética
16.
Heredity (Edinb) ; 122(2): 133-149, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29880893

RESUMEN

Admixture resulting from natural dispersal processes can potentially generate novel phenotypic variation that may facilitate persistence in changing environments or result in the loss of population-specific adaptations. Yet, under the US Endangered Species Act, policy is limited for management of individuals whose ancestry includes a protected taxon; therefore, they are generally not protected under the Act. This issue is exemplified by the recently re-established grey wolves of the Pacific Northwest states of Washington and Oregon, USA. This population was likely founded by two phenotypically and genetically distinct wolf ecotypes: Northern Rocky Mountain (NRM) forest and coastal rainforest. The latter is considered potentially threatened in southeast Alaska and thus the source of migrants may affect plans for their protection. To assess the genetic source of the re-established population, we sequenced a ~ 300 bp portion of the mitochondrial control region and ~ 5 Mbp of the nuclear genome. Genetic analysis revealed that the Washington wolves share ancestry with both wolf ecotypes, whereas the Oregon population shares ancestry with NRM forest wolves only. Using ecological niche modelling, we found that the Pacific Northwest states contain environments suitable for each ecotype, with wolf packs established in both environmental types. Continued migration from coastal rainforest and NRM forest source populations may increase the genetic diversity of the Pacific Northwest population. However, this admixed population challenges traditional management regimes given that admixture occurs between an adaptively distinct ecotype and a more abundant reintroduced interior form. Our results emphasize the need for a more precise US policy to address the general problem of admixture in the management of endangered species, subspecies, and distinct population segments.


Asunto(s)
Especies en Peligro de Extinción , Lobos/crecimiento & desarrollo , Distribución Animal , Animales , Cruzamiento , Conservación de los Recursos Naturales , Ecosistema , Especies en Peligro de Extinción/estadística & datos numéricos , Femenino , Genotipo , Masculino , Noroeste de Estados Unidos , Dinámica Poblacional , Lobos/clasificación , Lobos/genética , Lobos/fisiología
17.
PLoS Genet ; 12(3): e1005851, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26943675

RESUMEN

Controlling for background demographic effects is important for accurately identifying loci that have recently undergone positive selection. To date, the effects of demography have not yet been explicitly considered when identifying loci under selection during dog domestication. To investigate positive selection on the dog lineage early in the domestication, we examined patterns of polymorphism in six canid genomes that were previously used to infer a demographic model of dog domestication. Using an inferred demographic model, we computed false discovery rates (FDR) and identified 349 outlier regions consistent with positive selection at a low FDR. The signals in the top 100 regions were frequently centered on candidate genes related to brain function and behavior, including LHFPL3, CADM2, GRIK3, SH3GL2, MBP, PDE7B, NTAN1, and GLRA1. These regions contained significant enrichments in behavioral ontology categories. The 3rd top hit, CCRN4L, plays a major role in lipid metabolism, that is supported by additional metabolism related candidates revealed in our scan, including SCP2D1 and PDXC1. Comparing our method to an empirical outlier approach that does not directly account for demography, we found only modest overlaps between the two methods, with 60% of empirical outliers having no overlap with our demography-based outlier detection approach. Demography-aware approaches have lower-rates of false discovery. Our top candidates for selection, in addition to expanding the set of neurobehavioral candidate genes, include genes related to lipid metabolism, suggesting a dietary target of selection that was important during the period when proto-dogs hunted and fed alongside hunter-gatherers.


Asunto(s)
Genética de Población , Genómica , Metabolismo de los Lípidos/genética , Selección Genética , Animales , Demografía , Perros , Genoma , Polimorfismo de Nucleótido Simple
19.
PLoS Genet ; 10(1): e1004016, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24453982

RESUMEN

To identify genetic changes underlying dog domestication and reconstruct their early evolutionary history, we generated high-quality genome sequences from three gray wolves, one from each of the three putative centers of dog domestication, two basal dog lineages (Basenji and Dingo) and a golden jackal as an outgroup. Analysis of these sequences supports a demographic model in which dogs and wolves diverged through a dynamic process involving population bottlenecks in both lineages and post-divergence gene flow. In dogs, the domestication bottleneck involved at least a 16-fold reduction in population size, a much more severe bottleneck than estimated previously. A sharp bottleneck in wolves occurred soon after their divergence from dogs, implying that the pool of diversity from which dogs arose was substantially larger than represented by modern wolf populations. We narrow the plausible range for the date of initial dog domestication to an interval spanning 11-16 thousand years ago, predating the rise of agriculture. In light of this finding, we expand upon previous work regarding the increase in copy number of the amylase gene (AMY2B) in dogs, which is believed to have aided digestion of starch in agricultural refuse. We find standing variation for amylase copy number variation in wolves and little or no copy number increase in the Dingo and Husky lineages. In conjunction with the estimated timing of dog origins, these results provide additional support to archaeological finds, suggesting the earliest dogs arose alongside hunter-gathers rather than agriculturists. Regarding the geographic origin of dogs, we find that, surprisingly, none of the extant wolf lineages from putative domestication centers is more closely related to dogs, and, instead, the sampled wolves form a sister monophyletic clade. This result, in combination with dog-wolf admixture during the process of domestication, suggests that a re-evaluation of past hypotheses regarding dog origins is necessary.


Asunto(s)
Amilasas/genética , Animales Domésticos/genética , Variaciones en el Número de Copia de ADN/genética , Evolución Molecular , Animales , ADN Mitocondrial/genética , Dieta , Perros , Variación Genética , Filogenia , Densidad de Población , Lobos/clasificación , Lobos/genética
20.
Mol Ecol ; 25(1): 357-79, 2016 01.
Artículo en Inglés | MEDLINE | ID: mdl-26562361

RESUMEN

In an era of ever-increasing amounts of whole-genome sequence data for individuals and populations, the utility of traditional single nucleotide polymorphisms (SNPs) array-based genome scans is uncertain. We previously performed a SNP array-based genome scan to identify candidate genes under selection in six distinct grey wolf (Canis lupus) ecotypes. Using this information, we designed a targeted capture array for 1040 genes, including all exons and flanking regions, as well as 5000 1-kb nongenic neutral regions, and resequenced these regions in 107 wolves. Selection tests revealed striking patterns of variation within candidate genes relative to noncandidate regions and identified potentially functional variants related to local adaptation. We found 27% and 47% of candidate genes from the previous SNP array study had functional changes that were outliers in sweed and bayenv analyses, respectively. This result verifies the use of genomewide SNP surveys to tag genes that contain functional variants between populations. We highlight nonsynonymous variants in APOB, LIPG and USH2A that occur in functional domains of these proteins, and that demonstrate high correlation with precipitation seasonality and vegetation. We find Arctic and High Arctic wolf ecotypes have higher numbers of genes under selection, which highlight their conservation value and heightened threat due to climate change. This study demonstrates that combining genomewide genotyping arrays with large-scale resequencing and environmental data provides a powerful approach to discern candidate functional variants in natural populations.


Asunto(s)
Ecotipo , Genética de Población , Selección Genética , Lobos/genética , Adaptación Biológica/genética , Animales , Regiones Árticas , Ambiente , Evolución Molecular , Frecuencia de los Genes , Genotipo , Mutación , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA