Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(17): 3153-3168.e18, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35926507

RESUMEN

The centromere represents a single region in most eukaryotic chromosomes. However, several plant and animal lineages assemble holocentromeres along the entire chromosome length. Here, we compare genome organization and evolution as a function of centromere type by assembling chromosome-scale holocentric genomes with repeat-based holocentromeres from three beak-sedge (Rhynchospora pubera, R. breviuscula, and R. tenuis) and their closest monocentric relative, Juncus effusus. We demonstrate that transition to holocentricity affected 3D genome architecture by redefining genomic compartments, while distributing centromere function to thousands of repeat-based centromere units genome-wide. We uncover a complex genome organization in R. pubera that hides its unexpected octoploidy and describe a marked reduction in chromosome number for R. tenuis, which has only two chromosomes. We show that chromosome fusions, facilitated by repeat-based holocentromeres, promoted karyotype evolution and diploidization. Our study thus sheds light on several important aspects of genome architecture and evolution influenced by centromere organization.


Asunto(s)
Centrómero , Cyperaceae , Animales , Centrómero/genética , Cyperaceae/genética , Evolución Molecular , Cariotipo , Plantas/genética
2.
Nature ; 618(7965): 557-565, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37198485

RESUMEN

Centromeres are critical for cell division, loading CENH3 or CENPA histone variant nucleosomes, directing kinetochore formation and allowing chromosome segregation1,2. Despite their conserved function, centromere size and structure are diverse across species. To understand this centromere paradox3,4, it is necessary to know how centromeric diversity is generated and whether it reflects ancient trans-species variation or, instead, rapid post-speciation divergence. To address these questions, we assembled 346 centromeres from 66 Arabidopsis thaliana and 2 Arabidopsis lyrata accessions, which exhibited a remarkable degree of intra- and inter-species diversity. A. thaliana centromere repeat arrays are embedded in linkage blocks, despite ongoing internal satellite turnover, consistent with roles for unidirectional gene conversion or unequal crossover between sister chromatids in sequence diversification. Additionally, centrophilic ATHILA transposons have recently invaded the satellite arrays. To counter ATHILA invasion, chromosome-specific bursts of satellite homogenization generate higher-order repeats and purge transposons, in line with cycles of repeat evolution. Centromeric sequence changes are even more extreme in comparison between A. thaliana and A. lyrata. Together, our findings identify rapid cycles of transposon invasion and purging through satellite homogenization, which drive centromere evolution and ultimately contribute to speciation.


Asunto(s)
Arabidopsis , Centrómero , Elementos Transponibles de ADN , ADN Satélite , Evolución Molecular , Arabidopsis/genética , Arabidopsis/metabolismo , Centrómero/genética , Centrómero/metabolismo , Elementos Transponibles de ADN/genética , Histonas/genética , Histonas/metabolismo , Nucleosomas/genética , Nucleosomas/metabolismo , ADN Satélite/genética , Conversión Génica
3.
Mol Biol Evol ; 40(7)2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37432770

RESUMEN

A transition to selfing can be beneficial when mating partners are scarce, for example, due to ploidy changes or at species range edges. Here, we explain how self-compatibility evolved in diploid Siberian Arabidopsis lyrata, and how it contributed to the establishment of allotetraploid Arabidopsis kamchatica. First, we provide chromosome-level genome assemblies for two self-fertilizing diploid A. lyrata accessions, one from North America and one from Siberia, including a fully assembled S-locus for the latter. We then propose a sequence of events leading to the loss of self-incompatibility in Siberian A. lyrata, date this independent transition to ∼90 Kya, and infer evolutionary relationships between Siberian and North American A. lyrata, showing an independent transition to selfing in Siberia. Finally, we provide evidence that this selfing Siberian A. lyrata lineage contributed to the formation of the allotetraploid A. kamchatica and propose that the selfing of the latter is mediated by the loss-of-function mutation in a dominant S-allele inherited from A. lyrata.


Asunto(s)
Arabidopsis , Diploidia , Arabidopsis/genética , Alelos , Ploidias , Evolución Biológica
4.
Plant J ; 109(1): 7-22, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34800071

RESUMEN

Drought is a major limitation for survival and growth in plants. With more frequent and severe drought episodes occurring due to climate change, it is imperative to understand the genomic and physiological basis of drought tolerance to be able to predict how species will respond in the future. In this study, univariate and multitrait multivariate genome-wide association study methods were used to identify candidate genes in two iconic and ecosystem-dominating species of the western USA, coast redwood and giant sequoia, using 10 drought-related physiological and anatomical traits and genome-wide sequence-capture single nucleotide polymorphisms. Population-level phenotypic variation was found in carbon isotope discrimination, osmotic pressure at full turgor, xylem hydraulic diameter, and total area of transporting fibers in both species. Our study identified new 78 new marker × trait associations in coast redwood and six in giant sequoia, with genes involved in a range of metabolic, stress, and signaling pathways, among other functions. This study contributes to a better understanding of the genomic basis of drought tolerance in long-generation conifers and helps guide current and future conservation efforts in the species.


Asunto(s)
Adaptación Fisiológica/genética , Genoma de Planta/genética , Sequoia/genética , Sequoiadendron/genética , Transducción de Señal/genética , Isótopos de Carbono/análisis , Conservación de los Recursos Naturales , Sequías , Estudio de Asociación del Genoma Completo , Herencia Multifactorial/genética , Presión Osmótica , Fenotipo , Estomas de Plantas/genética , Estomas de Plantas/fisiología , Sequoia/fisiología , Sequoiadendron/fisiología , Xilema/genética , Xilema/fisiología
5.
Eur Heart J ; 43(5): 405-412, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34508630

RESUMEN

AIMS: We explored whether a missed cohort of patients in the community with heart failure (HF) and left ventricular systolic dysfunction (LVSD) could be identified and receive treatment optimization through a primary care heart failure (PCHF) service. METHODS AND RESULTS: PCHF is a partnership between Inspira Health, National Health Service Cardiologists and Medtronic. The PCHF service uses retrospective clinical audit to identify patients requiring a prospective face-to-face consultation with a consultant cardiologist for clinical review of their HF management within primary care. The service is delivered via five phases: (i) system interrogation of general practitioner (GP) systems; (ii) clinical audit of medical records; (iii) patient invitation; (iv) consultant reviews; and (v) follow-up. A total of 78 GP practices (864 194 population) have participated. In total, 19 393 patients' records were audited. HF register was 9668 (prevalence 1.1%) with 6162 patients coded with LVSD (prevalence 0.7%). HF case finder identified 9725 additional patients to be audited of whom 2916 patients required LVSD codes adding to the patient medical record (47% increase in LVSD). Prevalence of HF with LVSD increased from 0.7% to 1.05%. A total of 662 patients were invited for consultant cardiologist review at their local GP practice. The service found that within primary care, 27% of HF patients identified for a cardiologist consultation were eligible for complex device therapy, 45% required medicines optimization, and 47% of patients audited required diagnosis codes adding to their GP record. CONCLUSION: A PCHF service can identify a missed cohort of patients with HF and LVSD, enabling the optimization of prognostic medication and an increase in device prescription.


Asunto(s)
Insuficiencia Cardíaca , Disfunción Ventricular Izquierda , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/terapia , Humanos , Atención Primaria de Salud , Estudios Prospectivos , Estudios Retrospectivos , Medicina Estatal , Volumen Sistólico , Disfunción Ventricular Izquierda/terapia
6.
Anal Chem ; 94(21): 7460-7465, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35576511

RESUMEN

We describe an innovative use for the recently reported fast lipid analysis technique (FLAT) that allows for the generation of MALDI tandem mass spectrometry data suitable for lipid A structure analysis directly from a single Gram-negative bacterial colony. We refer to this tandem MS version of FLAT as FLATn. Neither technique requires sophisticated sample preparation beyond the selection of a single bacterial colony, which significantly reduces overall analysis time (∼1 h), as compared to conventional methods. Moreover, the tandem mass spectra generated by FLATn provides comprehensive information on fragments of lipid A, for example, ester bonded acyl chain dissociations, cross-ring cleavages, and glycosidic bond dissociations, all of which allow the facile determination of novel lipid A structures or confirmation of expected structures. In addition to generating tandem mass spectra directly from single colonies, we also show that FLATn can be used to analyze lipid A structures taken directly from a complex biological clinical sample without the need for ex vivo growth. From a urine sample from a patient with an E. coli infection, FLATn identified the organism and demonstrated that this clinical isolate carried the mobile colistin resistance-1 gene (mcr-1) that results in the addition of a phosphoethanolamine moiety and subsequently resistance to the antimicrobial, colistin (polymyxin E). Moreover, FLATn allowed for the determination of the existence of a structural isomer in E. coli lipid A that had either a 1- or 4'-phosphate group modification by phosphoethanolamine generated by a change of bacterial culture conditions.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Antibacterianos/farmacología , Colistina , Farmacorresistencia Bacteriana , Escherichia coli , Infecciones por Escherichia coli/tratamiento farmacológico , Humanos , Lípido A , Pruebas de Sensibilidad Microbiana
7.
J Community Health ; 47(2): 316-323, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35001203

RESUMEN

We reviewed data from the electronic health data system used by Community Health Workers (CHWs) in the Richmond/Henrico Health District of the Virginia Department of Health from January 1st 2013 to December 31st 2020, to map the Community Health Workers' impact on Social Determinants of Health. We also interviewed the CHWs to obtain demographic information and information about the challenges their communities face. Most referrals were for Healthcare Access (48.7%) and Economic Stability (38.3%), while Neighborhood and Built Environment (0.09%) was the least used referral in the Social Determinants of Health during the time under review. Community Health Workers also carried out 1367 and 565 Blood Pressure and Blood Sugar measurements respectively during the period. The Community Health workers were all women and their education ranged from High School graduate to Master's degree graduate and they served as Community Health Workers for time ranging from 1 to 8 years. We found their answers to the questions on the issue plaguing the community they serve to indicate empathy and understanding of the issues of low-income communities. Having CHWs working as part of the public health system to deliver health promotion and provide referrals for social determinants of health could serve as a model for improving health access and impacting Social Determinants of Health positively for low-income populations across the country.


Asunto(s)
Agentes Comunitarios de Salud , Vivienda , Femenino , Accesibilidad a los Servicios de Salud , Humanos , Pobreza , Virginia
8.
Sensors (Basel) ; 22(11)2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35684724

RESUMEN

We report on the deployment of MEMS static bifurcation (DC) sensors for the detection of volatile organic compounds (VOCs): hydrogen sulfide and formaldehyde. We demonstrate a sensor that can detect as low as a few ppm of hydrogen sulfide. We also demonstrate a sensor array that can selectively detect formaldehyde in the presence of benzene, a closely related interferent. Toward that end, we investigate the sensitivity and selectivity of two detector polymers-polyaniline (PANI) and poly (2,5-dimethyl aniline) (P25DMA)-to both gases. A semiautomatic method is developed to functionalize individual sensors and sensor arrays with the detector polymers. We found that the sensor array can selectively sense 1 ppm of formaldehyde in the presence of benzene.


Asunto(s)
Sulfuro de Hidrógeno , Sistemas Microelectromecánicos , Compuestos Orgánicos Volátiles , Benceno , Formaldehído , Polímeros
9.
J Antimicrob Chemother ; 76(3): 616-625, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33259594

RESUMEN

BACKGROUND: Bacteria adapt to survive and grow in different environments. Genetic mutations that promote bacterial survival under harsh conditions can also restrict growth. The causes and consequences of these adaptations have important implications for diagnosis, pathogenesis, and therapy. OBJECTIVES: We describe the isolation and characterization of an antibiotic-dependent, temperature-sensitive Pseudomonas aeruginosa mutant chronically infecting the respiratory tract of a cystic fibrosis (CF) patient, underscoring the clinical challenges bacterial adaptations can present. METHODS: Respiratory samples collected from a CF patient during routine care were cultured for standard pathogens. P. aeruginosa isolates recovered from samples were analysed for in vitro growth characteristics, antibiotic susceptibility, clonality, and membrane phospholipid and lipid A composition. Genetic mutations were identified by whole genome sequencing. RESULTS: P. aeruginosa isolates collected over 5 years from respiratory samples of a CF patient frequently harboured a mutation in phosphatidylserine decarboxylase (psd), encoding an enzyme responsible for phospholipid synthesis. This mutant could only grow at 37°C when in the presence of supplemented magnesium, glycerol, or, surprisingly, the antibiotic sulfamethoxazole, which the source patient had repeatedly received. Of concern, this mutant was not detectable on standard selective medium at 37°C. This growth defect correlated with alterations in membrane phospholipid and lipid A content. CONCLUSIONS: A P. aeruginosa mutant chronically infecting a CF patient exhibited dependence on sulphonamides and would likely evade detection using standard clinical laboratory methods. The diagnostic and therapeutic challenges presented by this mutant highlight the complex interplay between bacterial adaptation, antibiotics, and laboratory practices, during chronic bacterial infections.


Asunto(s)
Fibrosis Quística , Infecciones por Pseudomonas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Fibrosis Quística/complicaciones , Fibrosis Quística/tratamiento farmacológico , Humanos , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/genética , Temperatura
10.
Clin Sci (Lond) ; 135(22): 2559-2573, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34778899

RESUMEN

Granulocyte macrophage colony stimulating factor (GM-CSF) is a key participant in, and a clinical target for, the treatment of inflammatory diseases including rheumatoid arthritis (RA). Therapeutic inhibition of GM-CSF signalling using monoclonal antibodies to the α-subunit of the GM-CSF receptor (GMCSFRα) has shown clear benefit in patients with RA, giant cell arteritis (GCAs) and some efficacy in severe SARS-CoV-2 infection. However, GM-CSF autoantibodies are associated with the development of pulmonary alveolar proteinosis (PAP), a rare lung disease characterised by alveolar macrophage (AM) dysfunction and the accumulation of surfactant lipids. We assessed how the anti-GMCSFRα approach might impact surfactant turnover in the airway. Female C57BL/6J mice received a mouse-GMCSFRα blocking antibody (CAM-3003) twice per week for up to 24 weeks. A parallel, comparator cohort of the mouse PAP model, GM-CSF receptor ß subunit (GMCSFRß) knock-out (KO), was maintained up to 16 weeks. We assessed lung tissue histopathology alongside lung phosphatidylcholine (PC) metabolism using stable isotope lipidomics. GMCSFRß KO mice reproduced the histopathological and biochemical features of PAP, accumulating surfactant PC in both broncho-alveolar lavage fluid (BALF) and lavaged lung tissue. The incorporation pattern of methyl-D9-choline showed impaired catabolism and not enhanced synthesis. In contrast, chronic supra-pharmacological CAM-3003 exposure (100 mg/kg) over 24 weeks did not elicit a histopathological PAP phenotype despite some changes in lung PC catabolism. Lack of significant impairment of AM catabolic function supports clinical observations that therapeutic antibodies to this pathway have not been associated with PAP in clinical trials.


Asunto(s)
Artritis Reumatoide/metabolismo , COVID-19/terapia , Proteinosis Alveolar Pulmonar/inmunología , Surfactantes Pulmonares/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Animales , Anticuerpos Monoclonales Humanizados/farmacología , Artritis Reumatoide/terapia , Autoanticuerpos/química , Líquido del Lavado Bronquioalveolar , COVID-19/inmunología , Colina/análogos & derivados , Femenino , Factor Estimulante de Colonias de Granulocitos y Macrófagos/química , Inflamación , Interleucina-6/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Proteinosis Alveolar Pulmonar/genética , SARS-CoV-2/inmunología , Tensoactivos
11.
Langmuir ; 37(4): 1372-1385, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33449700

RESUMEN

The outer membrane (OM) of Gram-negative (G-) bacteria presents a barrier for many classes of antibacterial agents. Lipopolysaccharide (LPS), present in the outer leaflet of the OM, is stabilized by divalent cations and is considered to be the major impediment for antibacterial agent permeation. However, the actual affinities of major antibiotic classes toward LPS have not yet been determined. In the present work, we use Langmuir monolayers formed from E. coli Re and Rd types of LPS to record pressure-area isotherms in the presence of antimicrobial agents. Our observations suggest three general types of interactions. First, some antimicrobials demonstrated no measurable interactions with LPS. This lack of interaction in the case of cefsulodin, a third-generation cephalosporin antibiotic, correlates with its low efficacy against G- bacteria. Ampicillin and ciprofloxacin also show no interactions with LPS, but in contrast to cefsulodin, both exhibit good efficacy against G- bacteria, indicating permeation through common porins. Second, we observe substantial intercalation of the more hydrophobic antibiotics, novobiocin, rifampicin, azithromycin, and telithromycin, into relaxed LPS monolayers. These largely repartition back to the subphase with monolayer compression. We find that the hydrophobic area, charge, and dipole all show correlations with both the mole fraction of antibiotic retained in the monolayer at the monolayer-bilayer equivalence pressure and the efficacies of these antibiotics against G- bacteria. Third, amine-rich gentamicin and the cationic antimicrobial peptides polymyxin B and colistin show no hydrophobic insertion but are instead strongly driven into the polar LPS layer by electrostatic interactions in a pressure-independent manner. Their intercalation stably increases the area per molecule (by up to 20%), which indicates massive formation of defects in the LPS layer. These defects support a self-promoted permeation mechanism of these antibiotics through the OM, which explains the high efficacy and specificity of these antimicrobials against G- bacteria.


Asunto(s)
Antibacterianos , Lipopolisacáridos , Antibacterianos/farmacología , Escherichia coli , Porinas , Electricidad Estática
12.
Anal Chem ; 92(20): 13667-13671, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32902263

RESUMEN

We developed a method to directly detect and map the Gram-negative bacterial virulence factor lipid A derived from lipopolysaccharide (LPS) by coupling acid hydrolysis with matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). As the structure of lipid A (endotoxin) determines the innate immune outcome during infection, the ability to map its location within an infected organ or animal is needed to understand localized inflammatory responses that results during host-pathogen interactions. We previously demonstrated detection of free lipid A from infected tissue; however detection of lipid A derived from intact (smooth) LPS from host-pathogen MSI studies, proved elusive. Here, we detected LPS-derived lipid A from the Gram-negative pathogens, Escherichia coli (Ec, m/z 1797) and Pseudomonas aeruginosa (Pa, m/z 1446) using on-tissue acid hydrolysis to cleave the glycosidic linkage between the polysaccharide (core and O-antigen) and lipid A moieties of LPS. Using accurate mass methods, the ion corresponding to the major Ec and Pa lipid A species (m/z 1797 and 1446, respectively) were unambiguously discriminated from complex tissue substrates. Further, we evaluated potential delocalization and signal loss of other tissue lipids and found no evidence for either, making this LPS-to-Lipid A-MSI (LLA-MSI) method, compatible with simultaneous host-pathogen lipid imaging following acid hydrolysis. This spatially sensitive technique is the first step in mapping host-influenced de novo lipid A modifications, such as those associated with antimicrobial resistance phenotypes, during Gram-negative bacterial infection and will advance our understanding of the host-pathogen interface.


Asunto(s)
Lípido A/análisis , Lipopolisacáridos/metabolismo , Animales , Escherichia coli/metabolismo , Riñón/microbiología , Límite de Detección , Ratones , Pseudomonas aeruginosa/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
13.
Langmuir ; 36(18): 5065-5077, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32306736

RESUMEN

Piscidins 1 and 3 (P1 and P3) are potent antimicrobial peptides isolated from striped bass. Their mechanism of action involves formation of amphipathic α-helices on contact with phospholipids and destabilization of the microbial cytoplasmic membrane. The peptides are active against both Gram-positive and Gram-negative bacteria, suggesting easy passage across the outer membrane. Here, we performed a comparative study of these two piscidins at the air-water interface on lipopolysaccharide (LPS) monolayers modeling the outer bacterial surface of Gram-negative organisms and on phospholipid monolayers, which mimic the inner membrane. The results show that P1 and P3 are highly surface active (log KAW ∼ 6.8) and have similar affinities to phospholipid monolayers (log Klip ≈ 7.7). P1, which is more potent against Gram negatives, exhibits a much stronger partitioning into LPS monolayers (log KLPS = 8.3). Pressure-area isotherms indicate that under increasing lateral pressures, inserted P1 repartitions from phospholipid monolayers back to the subphase or to a more shallow position with in-plane areas of ∼170 Å2 per peptide, corresponding to fully folded amphipathic α-helices. In contrast, peptide expulsion from LPS occurs with areas of ∼35 Å2, suggesting that the peptides may not form the similarly oriented, rigid secondary structures when they avidly intercalate between LPS molecules. Patch-clamp experiments on Escherichia coli spheroplasts show that when P1 and P3 reach the outer surface of the bacterial cytoplasmic membrane, they produce fluctuating conductive structures at voltages above 80 mV. The data suggests that the strong activity of these piscidins against Gram-negative bacteria begins with the preferential accumulation of peptides in the outer LPS layer followed by penetration into the periplasm, where they form stable amphipathic α-helices upon contact with phospholipids and attack the energized inner membrane.


Asunto(s)
Lipopolisacáridos , Fosfolípidos , Antibacterianos , Membrana Celular , Bacterias Gramnegativas , Bacterias Grampositivas
14.
Proc Natl Acad Sci U S A ; 114(47): 12596-12601, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29109289

RESUMEN

Mass spectrometry imaging (MSI) was used to elucidate host lipids involved in the inflammatory signaling pathway generated at the host-pathogen interface during a septic bacterial infection. Using Francisella novicida as a model organism, a bacterial lipid virulence factor (endotoxin) was imaged and identified along with host phospholipids involved in the splenic response in murine tissues. Here, we demonstrate detection and distribution of endotoxin in a lethal murine F. novicida infection model, in addition to determining the temporally and spatially resolved innate lipid inflammatory response in both 2D and 3D renderings using MSI. Further, we show that the cyclooxygenase-2-dependent lipid inflammatory pathway is responsible for lethality in F. novicida infection due to overproduction of proinflammatory effectors including prostaglandin E2. The results of this study emphasize that spatial determination of the host lipid components of the immune response is crucial to identifying novel strategies to effectively address highly pathogenic and lethal infections stemming from bacterial, fungal, and viral origins.


Asunto(s)
Ciclooxigenasa 2/inmunología , Dinoprostona/inmunología , Francisella/patogenicidad , Infecciones por Bacterias Gramnegativas/inmunología , Interacciones Huésped-Patógeno , Bazo/inmunología , Animales , Ciclooxigenasa 2/deficiencia , Ciclooxigenasa 2/genética , Dinoprostona/biosíntesis , Eicosanoides/inmunología , Eicosanoides/metabolismo , Endotoxinas/biosíntesis , Endotoxinas/toxicidad , Femenino , Francisella/fisiología , Expresión Génica , Infecciones por Bacterias Gramnegativas/metabolismo , Infecciones por Bacterias Gramnegativas/mortalidad , Infecciones por Bacterias Gramnegativas/patología , Inmunidad Innata , Inflamación , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Imagen Molecular , Fosfolípidos/inmunología , Fosfolípidos/metabolismo , Transducción de Señal , Bazo/metabolismo , Bazo/patología , Análisis de Supervivencia
15.
Artículo en Inglés | MEDLINE | ID: mdl-31307977

RESUMEN

Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi, is a potentially life-threatening condition that has become a global issue. Current treatment is limited to two medicines that require prolonged dosing and are associated with multiple side effects, which often lead to treatment discontinuation and failure. One way to address these shortcomings is through target-based drug discovery on validated T. cruzi protein targets. One such target is the proteasome, which plays a crucial role in protein degradation and turnover through chymotrypsin-, trypsin-, and caspase-like catalytic activities. In order to initiate a proteasome drug discovery program, we isolated proteasomes from T. cruzi epimastigotes and characterized their activity using a commercially available glow-like luminescence-based assay. We developed a high-throughput biochemical assay for the chymotrypsin-like activity of the T. cruzi proteasome, which was found to be sensitive, specific, and robust but prone to luminescence technology interference. To mitigate this, we also developed a counterscreen assay that identifies potential interferers at the levels of both the luciferase enzyme reporter and the mechanism responsible for a glow-like response. Interestingly, we also found that the peptide substrate for chymotrypsin-like proteasome activity was not specific and was likely partially turned over by other catalytic sites of the protein. Finally, we utilized these biochemical tools to screen 18,098 compounds, exploring diverse drug-like chemical space, which allowed us to identify 39 hits that were active in the primary screening assay and inactive in the counterscreen assay.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Sistema Libre de Células , Luminiscencia , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/metabolismo , Reproducibilidad de los Resultados , Trypanosoma cruzi/química
16.
Nature ; 497(7450): 498-502, 2013 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-23636320

RESUMEN

There is a pressing need to develop alternatives to annual influenza vaccines and antiviral agents licensed for mitigating influenza infection. Previous studies reported that acute lung injury caused by chemical or microbial insults is secondary to the generation of host-derived, oxidized phospholipid that potently stimulates Toll-like receptor 4 (TLR4)-dependent inflammation. Subsequently, we reported that Tlr4(-/-) mice are highly refractory to influenza-induced lethality, and proposed that therapeutic antagonism of TLR4 signalling would protect against influenza-induced acute lung injury. Here we report that therapeutic administration of Eritoran (also known as E5564)-a potent, well-tolerated, synthetic TLR4 antagonist-blocks influenza-induced lethality in mice, as well as lung pathology, clinical symptoms, cytokine and oxidized phospholipid expression, and decreases viral titres. CD14 and TLR2 are also required for Eritoran-mediated protection, and CD14 directly binds Eritoran and inhibits ligand binding to MD2. Thus, Eritoran blockade of TLR signalling represents a novel therapeutic approach for inflammation associated with influenza, and possibly other infections.


Asunto(s)
Antivirales/farmacología , Disacáridos/farmacología , Disacáridos/uso terapéutico , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Fosfatos de Azúcar/farmacología , Fosfatos de Azúcar/uso terapéutico , Receptor Toll-Like 4/antagonistas & inhibidores , Lesión Pulmonar Aguda/complicaciones , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/prevención & control , Animales , Antivirales/uso terapéutico , Citocinas/genética , Citocinas/inmunología , Disacáridos/metabolismo , Femenino , Ligandos , Receptores de Lipopolisacáridos/metabolismo , Antígeno 96 de los Linfocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Fosfatos de Azúcar/metabolismo , Análisis de Supervivencia , Factores de Tiempo , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/inmunología
17.
Infect Immun ; 86(9)2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29986891

RESUMEN

Infectious diseases propagated by arthropod vectors, such as tularemia, are commonly initiated via dermal infection of the skin. However, due to the technical difficulties in achieving accurate and reproducible dermal deposition, intradermal models are less commonly used. To overcome these limitations, we used microneedle arrays (MNAs), which are micron-scale polymeric structures, to temporarily disrupt the barrier function of the skin and deliver a bacterial inoculum directly to the dermis of an animal. MNAs increase reliability by eliminating leakage of the inoculum or blood from the injection site, thereby providing a biologically relevant model for arthropod-initiated disease. Here, we validate the use of MNAs as a means to induce intradermal infection using a murine model of tularemia initiated by Francisella novicida We demonstrate targeted delivery of the MNA bolus to the dermal layer of the skin, which subsequently led to innate immune cell infiltration. Additionally, F. novicida-coated MNAs were used to achieve lethality in a dose-dependent manner in C57BL/6 mice. The immune profile of infected mice mirrored that of established F. novicida infection models, consisting of markedly increased serum levels of interleukin-6 and keratinocyte chemoattractant, splenic T-cell depletion, and an increase in splenic granulocytes, together confirming that MNAs can be used to reproducibly induce tularemia-like pathogenesis in mice. When MNAs were used to immunize mice using an attenuated F. novicida mutant (F. novicida ΔlpxD1), all immunized mice survived a lethal subcutaneous challenge. Thus, MNAs can be used to effectively deliver viable bacteria in vivo and provide a novel avenue to study intradermally induced microbial diseases in animal models.


Asunto(s)
Francisella/patogenicidad , Inyecciones Intradérmicas/instrumentación , Agujas , Piel/microbiología , Tularemia/prevención & control , Animales , Anticuerpos Antibacterianos/sangre , Vacunas Bacterianas/administración & dosificación , Vacunas Bacterianas/inmunología , Dermis/inmunología , Dermis/microbiología , Modelos Animales de Enfermedad , Femenino , Inmunización/instrumentación , Inmunización/métodos , Interleucina-6/sangre , Ratones , Ratones Endogámicos C57BL , Mutación , Reproducibilidad de los Resultados , Piel/inmunología , Bazo/inmunología , Tularemia/inmunología , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología
18.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(11): 1439-1450, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28108356

RESUMEN

Strategies utilizing Toll-like receptor 4 (TLR4) agonists for treatment of cancer, infectious diseases, and other targets report promising results. Potent TLR4 antagonists are also gaining attention as therapeutic leads. Though some principles for TLR4 modulation by lipid A have been described, a thorough understanding of the structure-activity relationship (SAR) is lacking. Only through a complete definition of lipid A-TLR4 SAR is it possible to predict TLR4 signaling effects of discrete lipid A structures, rendering them more pharmacologically relevant. A limited 'toolbox' of lipid A-modifying enzymes has been defined and is largely composed of enzymes from mesophile human and zoonotic pathogens. Expansion of this 'toolbox' will result from extending the search into lipid A biosynthesis and modification by bacteria living at the extremes. Here, we review the fundamentals of lipid A structure, advances in lipid A uses in TLR4 modulation, and the search for novel lipid A-modifying systems in extremophile bacteria. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/metabolismo , Diseño de Fármacos , Enzimas/metabolismo , Lípido A/farmacología , Receptor Toll-Like 4/efectos de los fármacos , Animales , Proteínas Bacterianas/química , Enzimas/química , Humanos , Lípido A/biosíntesis , Lípido A/química , Lipogénesis , Conformación Proteica , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Receptor Toll-Like 4/química , Receptor Toll-Like 4/metabolismo
19.
Br J Cancer ; 115(4): 431-41, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27415012

RESUMEN

BACKGROUND: Clinical response to chemotherapy for ovarian cancer is frequently compromised by the development of drug-resistant disease. The underlying molecular mechanisms and implications for prescription of routinely prescribed chemotherapy drugs are poorly understood. METHODS: We created novel A2780-derived ovarian cancer cell lines resistant to paclitaxel and olaparib following continuous incremental drug selection. MTT assays were used to assess chemosensitivity to paclitaxel and olaparib in drug-sensitive and drug-resistant cells±the ABCB1 inhibitors verapamil and elacridar and cross-resistance to cisplatin, carboplatin, doxorubicin, rucaparib, veliparib and AZD2461. ABCB1 expression was assessed by qRT-PCR, copy number, western blotting and immunohistochemical analysis and ABCB1 activity assessed by the Vybrant and P-glycoprotein-Glo assays. RESULTS: Paclitaxel-resistant cells were cross-resistant to olaparib, doxorubicin and rucaparib but not to veliparib or AZD2461. Resistance correlated with increased ABCB1 expression and was reversible following treatment with the ABCB1 inhibitors verapamil and elacridar. Active efflux of paclitaxel, olaparib, doxorubicin and rucaparib was confirmed in drug-resistant cells and in ABCB1-expressing bacterial membranes. CONCLUSIONS: We describe a common ABCB1-mediated mechanism of paclitaxel and olaparib resistance in ovarian cancer cells. Optimal choice of PARP inhibitor may therefore limit the progression of drug-resistant disease, while routine prescription of first-line paclitaxel may significantly limit subsequent chemotherapy options in ovarian cancer patients.


Asunto(s)
Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos/genética , Neoplasias Ováricas/tratamiento farmacológico , Paclitaxel/uso terapéutico , Ftalazinas/uso terapéutico , Piperazinas/uso terapéutico , ARN Mensajero/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Acridinas/farmacología , Western Blotting , Línea Celular Tumoral , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Inmunohistoquímica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tetrahidroisoquinolinas/farmacología , Verapamilo/farmacología
20.
New Phytol ; 211(1): 186-93, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26996245

RESUMEN

Polyploidy is common and an important evolutionary factor in most land plant lineages, but it is rare in gymnosperms. Coast redwood (Sequoia sempervirens) is one of just two polyploid conifer species and the only hexaploid. Evidence from fossil guard cell size suggests that polyploidy in Sequoia dates to the Eocene. Numerous hypotheses about the mechanism of polyploidy and parental genome donors have been proposed, based primarily on morphological and cytological data, but it remains unclear how Sequoia became polyploid and why this lineage overcame an apparent gymnosperm barrier to whole-genome duplication (WGD). We sequenced transcriptomes and used phylogenetic inference, Bayesian concordance analysis and paralog age distributions to resolve relationships among gene copies in hexaploid coast redwood and close relatives. Our data show that hexaploidy in coast redwood is best explained by autopolyploidy or, if there was allopolyploidy, it happened within the Californian redwood clade. We found that duplicate genes have more similar sequences than expected, given the age of the inferred polyploidization. Conflict between molecular and fossil estimates of WGD can be explained if diploidization occurred very slowly following polyploidization. We extrapolate from this to suggest that the rarity of polyploidy in gymnosperms may be due to slow diploidization in this clade.


Asunto(s)
Genoma de Planta , Filogenia , Poliploidía , Sequoia/genética , Evolución Biológica , Tracheophyta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA