Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926543

RESUMEN

Addictions often develop in a social context, although the influence of social factors did not receive much attention in the neuroscience of addiction. Recent animal studies suggest that peer presence can reduce cocaine intake, an influence potentially mediated, among others, by the subthalamic nucleus (STN). However, there is to date no neurobiological study investigating this mediation in humans. This study investigated the impact of social context and drug cues on brain correlates of inhibitory control in individuals with and without cocaine use disorder (CUD) using functional Magnetic Resonance Imaging (fMRI). Seventeen CUD participants and 17 healthy controls (HC) performed a novel fMRI "Social" Stop-Signal Task (SSST) in the presence or absence of an observer while being exposed to cocaine-related (vs. neutral) cues eliciting craving in drug users. The results showed that CUD participants, while slower at stopping with neutral cues, recovered control level stopping abilities with cocaine cues, while HC did not show any difference. During inhibition (Stop Correct vs Stop Incorrect), activity in the right STN, right inferior frontal gyrus (IFG), and bilateral orbitofrontal cortex (OFC) varied according to the type of cue. Notably, the presence of an observer reversed this effect in most areas for CUD participants. These findings highlight the impact of social context and drug cues on inhibitory control in CUD and the mediation of these effects by the right STN and bilateral OFC, emphasizing the importance of considering the social context in addiction research. They also comfort the STN as a potential addiction treatment target.

2.
Cereb Cortex ; 34(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39051660

RESUMEN

What is the function of auditory hemispheric asymmetry? We propose that the identification of sound sources relies on the asymmetric processing of two complementary and perceptually relevant acoustic invariants: actions and objects. In a large dataset of environmental sounds, we observed that temporal and spectral modulations display only weak covariation. We then synthesized auditory stimuli by simulating various actions (frictions) occurring on different objects (solid surfaces). Behaviorally, discrimination of actions relies on temporal modulations, while discrimination of objects relies on spectral modulations. Functional magnetic resonance imaging data showed that actions and objects are decoded in the left and right hemispheres, respectively, in bilateral superior temporal and left inferior frontal regions. This asymmetry reflects a generic differential processing-through differential neural sensitivity to temporal and spectral modulations present in environmental sounds-that supports the efficient categorization of actions and objects. These results support an ecologically valid framework of the functional role of auditory brain asymmetry.


Asunto(s)
Estimulación Acústica , Percepción Auditiva , Lateralidad Funcional , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Imagen por Resonancia Magnética/métodos , Lateralidad Funcional/fisiología , Adulto , Estimulación Acústica/métodos , Percepción Auditiva/fisiología , Adulto Joven , Mapeo Encefálico/métodos , Corteza Auditiva/fisiología , Corteza Auditiva/diagnóstico por imagen
3.
J Neurosci ; 43(1): 125-141, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36347621

RESUMEN

The human action observation network (AON) encompasses brain areas consistently engaged when we observe other's actions. Although the core nodes of the AON are present from childhood, it is not known to what extent they are sensitive to different action features during development. Because social cognitive abilities continue to mature during adolescence, the AON response to socially-oriented actions, but not to object-related actions, may differ in adolescents and adults. To test this hypothesis, we scanned with functional magnetic resonance imaging (fMRI) male and female typically-developing teenagers (n = 28; 13 females) and adults (n = 25; 14 females) while they passively watched videos of manual actions varying along two dimensions: sociality (i.e., directed toward another person or not) and transitivity (i.e., involving an object or not). We found that action observation recruited the same fronto-parietal and occipito-temporal regions in adults and adolescents. The modulation of voxel-wise activity according to the social or transitive nature of the action was similar in both groups of participants. Multivariate pattern analysis, however, revealed that decoding accuracies in intraparietal sulcus (IPS)/superior parietal lobe (SPL) for both sociality and transitivity were lower for adolescents compared with adults. In addition, in the lateral occipital temporal cortex (LOTC), generalization of decoding across the orthogonal dimension was lower for sociality only in adolescents. These findings indicate that the representation of the content of others' actions, and in particular their social dimension, in the adolescent AON is still not as robust as in adults.SIGNIFICANCE STATEMENT The activity of the action observation network (AON) in the human brain is modulated according to the purpose of the observed action, in particular the extent to which it involves interaction with an object or with another person. How this conceptual representation of actions is implemented during development is largely unknown. Here, using multivoxel pattern analysis (MVPA) of functional magnetic resonance imaging (fMRI) data, we discovered that, while the action observation network is in place in adolescence, the fine-grain organization of its posterior regions is less robust than in adults to decode the abstract social dimensions of an action. This finding highlights the late maturation of social processing in the human brain.


Asunto(s)
Mapeo Encefálico , Lóbulo Occipital , Adulto , Humanos , Masculino , Adolescente , Femenino , Niño , Mapeo Encefálico/métodos , Lóbulo Occipital/fisiología , Lóbulo Temporal/fisiología , Lóbulo Parietal/fisiología , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
4.
Neuroimage ; 227: 117575, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33285330

RESUMEN

The "language-ready" brain theory suggests that the infant brain is pre-wired for language acquisition prior to language exposure. As a potential brain marker of such a language readiness, a leftward structural brain asymmetry was found in human infants for the Planum Temporale (PT), which overlaps with Wernicke's area. In the present longitudinal in vivo MRI study conducted in 35 newborn monkeys (Papio anubis), we found a similar leftward PT surface asymmetry. Follow-up rescanning sessions on 29 juvenile baboons at 7-10 months showed that such an asymmetry increases across the two ages classes. These original findings in non-linguistic primate infants strongly question the idea that the early PT asymmetry constitutes a human infant-specific marker for language development. Such a shared early perisylvian organization provides additional support that PT asymmetry might be related to a lateralized system inherited from our last common ancestor with Old-World monkeys at least 25-35 million years ago.


Asunto(s)
Lateralidad Funcional/fisiología , Lóbulo Temporal/diagnóstico por imagen , Envejecimiento/fisiología , Animales , Animales Recién Nacidos , Mapeo Encefálico , Femenino , Lenguaje , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Papio anubis , Lóbulo Temporal/crecimiento & desarrollo
5.
Neuroimage ; 226: 117519, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33227425

RESUMEN

Neuroimaging non-human primates (NHPs) is a growing, yet highly specialized field of neuroscience. Resources that were primarily developed for human neuroimaging often need to be significantly adapted for use with NHPs or other animals, which has led to an abundance of custom, in-house solutions. In recent years, the global NHP neuroimaging community has made significant efforts to transform the field towards more open and collaborative practices. Here we present the PRIMatE Resource Exchange (PRIME-RE), a new collaborative online platform for NHP neuroimaging. PRIME-RE is a dynamic community-driven hub for the exchange of practical knowledge, specialized analytical tools, and open data repositories, specifically related to NHP neuroimaging. PRIME-RE caters to both researchers and developers who are either new to the field, looking to stay abreast of the latest developments, or seeking to collaboratively advance the field .


Asunto(s)
Acceso a la Información , Neuroimagen/métodos , Sistemas en Línea , Primates/anatomía & histología , Primates/fisiología , Animales
6.
Dev Sci ; 24(2): e13046, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33035404

RESUMEN

While the brain network supporting handwriting has previously been defined in adults, its organization in children has never been investigated. We compared the handwriting network of 23 adults and 42 children (8- to 11-year-old). Participants were instructed to write the alphabet, the days of the week, and to draw loops while being scanned. The handwriting network previously described in adults (five key regions: left dorsal premotor cortex, superior parietal lobule (SPL), fusiform and inferior frontal gyri, and right cerebellum) was also strongly activated in children. The right precentral gyrus and the right anterior cerebellum were more strongly activated in adults than in children, while the left fusiform gyrus (FuG) was more strongly activated in children than in adults. Finally, we found that, contrary to adults, children recruited prefrontal regions to complete the writing task. This constitutes the first comparative investigation of the neural correlates of writing in children and adults. Our results suggest that the network supporting handwriting is already established in middle childhood. They also highlight the major role of prefrontal regions in learning this complex skill and the importance of right precentral regions and cerebellum in the performance of automated handwriting.


Asunto(s)
Mapeo Encefálico , Corteza Motora , Adulto , Encéfalo , Niño , Escritura Manual , Humanos , Imagen por Resonancia Magnética , Lóbulo Parietal
7.
Neuroimage ; 220: 117056, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32562781

RESUMEN

Unlike age-related brain changes linked to motor activity, neural alterations related to self-motion perception remain unknown. Using fMRI data, we investigated age-related changes in the central processing of somatosensory information by inducing illusions of right-hand rotations with specific proprioceptive and tactile stimulation. Functional connectivity during resting-state (rs-FC) was also compared between younger and older participants. Results showed common sensorimotor activations in younger and older adults during proprioceptive and tactile illusions, but less deactivation in various right frontal regions and the precuneus were found in the elderly. Older participants exhibited a less-lateralized pattern of activity across the primary sensorimotor cortices (SM1) in the proprioceptive condition only. This alteration of the interhemispheric balance correlated with declining individual performance in illusion velocity perception from a proprioceptive, but not a tactile, origin. By combining task-related data, rs-FC and behavioral performance, this study provided consistent results showing that hand movement perception was altered in the elderly, with a more pronounced deterioration of the proprioceptive system, likely due to the breakdown of inhibitory processes with aging. Nevertheless, older people could benefit from an increase in internetwork connectivity to overcome this kinesthetic decline.


Asunto(s)
Movimiento/fisiología , Propiocepción/fisiología , Corteza Sensoriomotora/diagnóstico por imagen , Percepción del Tacto/fisiología , Tacto/fisiología , Adulto , Anciano , Femenino , Mano/fisiología , Humanos , Cinestesia/fisiología , Imagen por Resonancia Magnética , Masculino , Percepción de Movimiento/fisiología , Corteza Sensoriomotora/fisiología , Adulto Joven
8.
Neuroimage ; 218: 116932, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32416226

RESUMEN

BACKGROUND: The amygdala and the hippocampus are two limbic structures that play a critical role in cognition and behavior, however their manual segmentation and that of their smaller nuclei/subfields in multicenter datasets is time consuming and difficult due to the low contrast of standard MRI. Here, we assessed the reliability of the automated segmentation of amygdalar nuclei and hippocampal subfields across sites and vendors using FreeSurfer in two independent cohorts of older and younger healthy adults. METHODS: Sixty-five healthy older (cohort 1) and 68 younger subjects (cohort 2), from the PharmaCog and CoRR consortia, underwent repeated 3D-T1 MRI (interval 1-90 days). Segmentation was performed using FreeSurfer v6.0. Reliability was assessed using volume reproducibility error (ε) and spatial overlapping coefficient (DICE) between test and retest session. RESULTS: Significant MRI site and vendor effects (p â€‹< â€‹.05) were found in a few subfields/nuclei for the ε, while extensive effects were found for the DICE score of most subfields/nuclei. Reliability was strongly influenced by volume, as ε correlated negatively and DICE correlated positively with volume size of structures (absolute value of Spearman's r correlations >0.43, p â€‹< â€‹1.39E-36). In particular, volumes larger than 200 â€‹mm3 (for amygdalar nuclei) and 300 â€‹mm3 (for hippocampal subfields, except for molecular layer) had the best test-retest reproducibility (ε â€‹< â€‹5% and DICE â€‹> â€‹0.80). CONCLUSION: Our results support the use of volumetric measures of larger amygdalar nuclei and hippocampal subfields in multisite MRI studies. These measures could be useful for disease tracking and assessment of efficacy in drug trials.


Asunto(s)
Amígdala del Cerebelo/anatomía & histología , Hipocampo/anatomía & histología , Procesamiento de Imagen Asistido por Computador/normas , Neuroimagen/normas , Programas Informáticos , Adulto , Anciano , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/normas , Masculino , Persona de Mediana Edad , Neuroimagen/métodos , Reproducibilidad de los Resultados
9.
Neuroimage ; 202: 116135, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31470125

RESUMEN

The left ventral occipitotemporal cortex (vOT) is considered the key area of the visuo-orthographic system. However, some studies reported that the area is also involved in speech processing tasks, especially those that require activation of orthographic knowledge. These findings suggest the existence of a top-down activation mechanism allowing such cross-modal activation. Yet, little is known about the involvement of the vOT in more natural speech processing situations like spoken sentence processing. Here, we addressed this issue in a functional Magnetic Resonance Imaging (fMRI) study while manipulating the impacts of two factors, i.e., task demands (semantic vs. low-level perceptual task) and the quality of speech signals (sentences presented against clear vs. noisy background). Analyses were performed at the levels of whole brain and region-of-interest (ROI) focusing on the vOT voxels individually identified through a reading task. Whole brain analysis showed that processing spoken sentences induced activity in a large network including the regions typically involved in phonological, articulatory, semantic and orthographic processing. ROI analysis further specified that a significant part of the vOT voxels that responded to written words also responded to spoken sentences, thus, suggesting that the same area within the left occipitotemporal pathway contributes to both reading and speech processing. Interestingly, both analyses provided converging evidence that vOT responses to speech were sensitive to both task demands and quality of speech signals: Compared to the low-level perceptual task, activity of the area increased when efforts on comprehension were required. The impact of background noise depended on task demands. It led to a decrease of vOT activity in the semantic task but not in the low-level perceptual task. Our results provide new insights into the function of this key area of the reading network, notably by showing that its speech-induced top-down activation also generalizes to ecological speech processing situations.


Asunto(s)
Mapeo Encefálico , Red Nerviosa/fisiología , Lóbulo Occipital/fisiología , Lectura , Percepción del Habla/fisiología , Lóbulo Temporal/fisiología , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/diagnóstico por imagen , Lóbulo Occipital/diagnóstico por imagen , Lóbulo Temporal/diagnóstico por imagen , Adulto Joven
10.
Hum Brain Mapp ; 38(1): 12-26, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27519630

RESUMEN

Free water elimination (FWE) in brain diffusion MRI has been shown to improve tissue specificity in human white matter characterization both in health and in disease. Relative to the classical diffusion tensor imaging (DTI) model, FWE is also expected to increase sensitivity to microstructural changes in longitudinal studies. However, it is not clear if these two models differ in their test-retest reproducibility. This study compares a bi-tensor model for FWE with DTI by extending a previous longitudinal-reproducibility 3T multisite study (10 sites, 7 different scanner models) of 50 healthy elderly participants (55-80 years old) scanned in two sessions at least 1 week apart. We computed the reproducibility of commonly used DTI metrics (FA: fractional anisotropy, MD: mean diffusivity, RD: radial diffusivity, and AXD: axial diffusivity), derived either using a DTI model or a FWE model. The DTI metrics were evaluated over 48 white-matter regions of the JHU-ICBM-DTI-81 white-matter labels atlas, and reproducibility errors were assessed. We found that relative to the DTI model, FWE significantly reduced reproducibility errors in most areas tested. In particular, for the FA and MD metrics, there was an average reduction of approximately 1% in the reproducibility error. The reproducibility scores did not significantly differ across sites. This study shows that FWE improves sensitivity and is thus promising for clinical applications, with the potential to identify more subtle changes. The increased reproducibility allows for smaller sample size or shorter trials in studies evaluating biomarkers of disease progression or treatment effects. Hum Brain Mapp 38:12-26, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Envejecimiento , Encéfalo/diagnóstico por imagen , Imagen de Difusión Tensora , Agua/metabolismo , Anciano , Anciano de 80 o más Años , Anisotropía , Femenino , Voluntarios Sanos , Humanos , Imagenología Tridimensional , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Sustancia Blanca/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA