Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33526683

RESUMEN

Knowledge of the temperature dependence of the isobaric specific heat (Cp) upon deep supercooling can give insights regarding the anomalous properties of water. If a maximum in Cp exists at a specific temperature, as in the isothermal compressibility, it would further validate the liquid-liquid critical point model that can explain the anomalous increase in thermodynamic response functions. The challenge is that the relevant temperature range falls in the region where ice crystallization becomes rapid, which has previously excluded experiments. Here, we have utilized a methodology of ultrafast calorimetry by determining the temperature jump from femtosecond X-ray pulses after heating with an infrared laser pulse and with a sufficiently long time delay between the pulses to allow measurements at constant pressure. Evaporative cooling of ∼15-µm diameter droplets in vacuum enabled us to reach a temperature down to ∼228 K with a small fraction of the droplets remaining unfrozen. We observed a sharp increase in Cp, from 88 J/mol/K at 244 K to about 218 J/mol/K at 229 K where a maximum is seen. The Cp maximum is at a similar temperature as the maxima of the isothermal compressibility and correlation length. From the Cp measurement, we estimated the excess entropy and self-diffusion coefficient of water and these properties decrease rapidly below 235 K.

2.
Anal Chem ; 94(37): 12645-12656, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36054318

RESUMEN

Serial femtosecond crystallography (SFX) has become one of the standard techniques at X-ray free-electron lasers (XFELs) to obtain high-resolution structural information from microcrystals of proteins. Nevertheless, reliable sample delivery is still often limiting data collection, as microcrystals can clog both field- and flow-focusing nozzles despite in-line filters. In this study, we developed acoustic 2D focusing of protein microcrystals in capillaries that enables real-time online characterization of crystal size and shape in the sample delivery line after the in-line filter. We used a piezoelectric actuator to create a standing wave perpendicular to the crystal flow, which focused lysozyme microcrystals into a single line inside a silica capillary so that they can be imaged using a high-speed camera. We characterized the acoustic contrast factor, focus size, and the coaxial flow lines and developed a splitting union that enables up-concentration to at least a factor of five. The focus size, flow rates, and geometry may enable an upper limit of up-concentration as high as 200 fold. The novel feedback and concentration control could be implemented for serial crystallography at synchrotrons with minor modifications. It will also aid the development of improved sample delivery systems that will increase SFX data collection rates at XFELs, with potential applications to many proteins that can only be purified and crystallized in small amounts.


Asunto(s)
Muramidasa , Sincrotrones , Acústica , Cristalografía , Cristalografía por Rayos X , Proteínas/química , Dióxido de Silicio
3.
J Synchrotron Radiat ; 29(Pt 3): 602-614, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35510993

RESUMEN

Serial crystallography of membrane proteins often employs high-viscosity injectors (HVIs) to deliver micrometre-sized crystals to the X-ray beam. Typically, the carrier medium is a lipidic cubic phase (LCP) media, which can also be used to nucleate and grow the crystals. However, despite the fact that the LCP is widely used with HVIs, the potential impact of the injection process on the LCP structure has not been reported and hence is not yet well understood. The self-assembled structure of the LCP can be affected by pressure, dehydration and temperature changes, all of which occur during continuous flow injection. These changes to the LCP structure may in turn impact the results of X-ray diffraction measurements from membrane protein crystals. To investigate the influence of HVIs on the structure of the LCP we conducted a study of the phase changes in monoolein/water and monoolein/buffer mixtures during continuous flow injection, at both atmospheric pressure and under vacuum. The reservoir pressure in the HVI was tracked to determine if there is any correlation with the phase behaviour of the LCP. The results indicated that, even though the reservoir pressure underwent (at times) significant variation, this did not appear to correlate with observed phase changes in the sample stream or correspond to shifts in the LCP lattice parameter. During vacuum injection, there was a three-way coexistence of the gyroid cubic phase, diamond cubic phase and lamellar phase. During injection at atmospheric pressure, the coexistence of a cubic phase and lamellar phase in the monoolein/water mixtures was also observed. The degree to which the lamellar phase is formed was found to be strongly dependent on the co-flowing gas conditions used to stabilize the LCP stream. A combination of laboratory-based optical polarization microscopy and simulation studies was used to investigate these observations.


Asunto(s)
Glicéridos , Lípidos , Glicéridos/química , Proteínas de la Membrana/química , Viscosidad , Agua/química , Difracción de Rayos X
4.
J Chem Phys ; 155(21): 214501, 2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34879659

RESUMEN

The structural changes of water upon deep supercooling were studied through wide-angle x-ray scattering at SwissFEL. The experimental setup had a momentum transfer range of 4.5 Å-1, which covered the principal doublet of the x-ray structure factor of water. The oxygen-oxygen structure factor was obtained for temperatures down to 228.5 ± 0.6 K. Similar to previous studies, the second diffraction peak increased strongly in amplitude as the structural change accelerated toward a local tetrahedral structure upon deep supercooling. We also observed an anomalous trend for the second peak position of the oxygen-oxygen structure factor (q2). We found that q2 exhibits an unprecedented positive partial derivative with respect to temperature for temperatures below 236 K. Based on Fourier inversion of our experimental data combined with reference data, we propose that the anomalous q2 shift originates from that a repeat spacing in the tetrahedral network, associated with all peaks in the oxygen-oxygen pair-correlation function, gives rise to a less dense local ordering that resembles that of low-density amorphous ice. The findings are consistent with that liquid water consists of a pentamer-based hydrogen-bonded network with low density upon deep supercooling.

5.
Phys Rev Lett ; 125(7): 076002, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32857536

RESUMEN

We study the structural dynamics of liquid water by time-resolved anisotropic x-ray scattering under the optical Kerr effect condition. In this way, we can separate the anisotropic scattering decay of 160 fs from the delayed temperature increase of ∼0.1 K occurring at 1 ps and quantify transient changes in the O-O pair distribution function. Polarizable molecular dynamics simulations reproduce well the experiment, indicating transient alignment of molecules along the electric field, which shortens the nearest-neighbor distances. In addition, analysis of the simulated water local structure provides evidence that two hypothesized fluctuating water configurations exhibit different polarizability.

6.
Proc Natl Acad Sci U S A ; 114(31): 8193-8198, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28652327

RESUMEN

Water exists in high- and low-density amorphous ice forms (HDA and LDA), which could correspond to the glassy states of high- (HDL) and low-density liquid (LDL) in the metastable part of the phase diagram. However, the nature of both the glass transition and the high-to-low-density transition are debated and new experimental evidence is needed. Here we combine wide-angle X-ray scattering (WAXS) with X-ray photon-correlation spectroscopy (XPCS) in the small-angle X-ray scattering (SAXS) geometry to probe both the structural and dynamical properties during the high-to-low-density transition in amorphous ice at 1 bar. By analyzing the structure factor and the radial distribution function, the coexistence of two structurally distinct domains is observed at T = 125 K. XPCS probes the dynamics in momentum space, which in the SAXS geometry reflects structural relaxation on the nanometer length scale. The dynamics of HDA are characterized by a slow component with a large time constant, arising from viscoelastic relaxation and stress release from nanometer-sized heterogeneities. Above 110 K a faster, strongly temperature-dependent component appears, with momentum transfer dependence pointing toward nanoscale diffusion. This dynamical component slows down after transition into the low-density form at 130 K, but remains diffusive. The diffusive character of both the high- and low-density forms is discussed among different interpretations and the results are most consistent with the hypothesis of a liquid-liquid transition in the ultraviscous regime.

7.
Phys Chem Chem Phys ; 21(1): 26-31, 2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-30489577

RESUMEN

The isothermal compressibility and correlation length of supercooled water obtained from small-angle X-ray scattering (SAXS) were analyzed by fits based on an apparent power-law in the temperature range from 280 K down to the temperature of maximum compressibility at 229 K. Although the increase in thermodynamic response functions is not towards a critical point, it is still possible to obtain an apparent power law all the way to the maximum values with best-fit exponents of γ = 0.40 ± 0.01 for the isothermal compressibility and ν = 0.26 ± 0.03 for the correlation length. The ratio between these exponents is close to a value of ≈0.5, as expected for a critical point, indicating the proximity of a potential second critical point. Comparison of γ obtained from experiment with molecular dynamics simulations on the iAMOEBA water model shows that it would be located at pressures in the neighborhood of 1 kbar. The high value and sharpness of the compressibility maximum observed in the experiment are not reproduced by any of the existing classical water models, thus inviting further development of simulation models of water.

8.
Phys Rev Lett ; 119(7): 075502, 2017 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-28949651

RESUMEN

Nuclear quantum effects (NQEs) have a significant influence on the hydrogen bonds in water and aqueous solutions and have thus been the topic of extensive studies. However, the microscopic origin and the corresponding temperature dependence of NQEs have been elusive and still remain the subject of ongoing discussion. Previous x-ray scattering investigations indicate that NQEs on the structure of water exhibit significant temperature dependence [Phys. Rev. Lett. 94, 047801 (2005)PRLTAO0031-900710.1103/PhysRevLett.94.047801]. Here, by performing wide-angle x-ray scattering of H_{2}O and D_{2}O droplets at temperatures from 275 K down to 240 K, we determine the temperature dependence of NQEs on the structure of water down to the deeply supercooled regime. The data reveal that the magnitude of NQEs on the structure of water is temperature independent, as the structure factor of D_{2}O is similar to H_{2}O if the temperature is shifted by a constant 5 K, valid from ambient conditions to the deeply supercooled regime. Analysis of the accelerated growth of tetrahedral structures in supercooled H_{2}O and D_{2}O also shows similar behavior with a clear 5 K shift. The results indicate a constant compensation between NQEs delocalizing the proton in the librational motion away from the bond and in the OH stretch vibrational modes along the bond. This is consistent with the fact that only the vibrational ground state is populated at ambient and supercooled conditions.

9.
Phys Rev Lett ; 119(15): 158102, 2017 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-29077445

RESUMEN

We use extremely bright and ultrashort pulses from an x-ray free-electron laser (XFEL) to measure correlations in x rays scattered from individual bioparticles. This allows us to go beyond the traditional crystallography and single-particle imaging approaches for structure investigations. We employ angular correlations to recover the three-dimensional (3D) structure of nanoscale viruses from x-ray diffraction data measured at the Linac Coherent Light Source. Correlations provide us with a comprehensive structural fingerprint of a 3D virus, which we use both for model-based and ab initio structure recovery. The analyses reveal a clear indication that the structure of the viruses deviates from the expected perfect icosahedral symmetry. Our results anticipate exciting opportunities for XFEL studies of the structure and dynamics of nanoscale objects by means of angular correlations.


Asunto(s)
Virus/ultraestructura , Difracción de Rayos X , Rayos Láser , Radiografía , Virus/química
10.
J Chem Phys ; 144(12): 124502, 2016 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-27036456

RESUMEN

In the present study, we investigate the process of evaporative cooling of nanometer-sized droplets in vacuum using molecular dynamics simulations with the TIP4P/2005 water model. The results are compared to the temperature evolution calculated from the Knudsen theory of evaporation which is derived from kinetic gas theory. The calculated and simulation results are found to be in very good agreement for an evaporation coefficient equal to unity. Our results are of interest to experiments utilizing droplet dispensers as well as to cloud micro-physics.

11.
Eur J Contracept Reprod Health Care ; 21(3): 234-41, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27003381

RESUMEN

OBJECTIVES: The aim of the study was to retrospectively evaluate the effectiveness of a fertility awareness-based method supported by a mobile-based application to prevent unwanted pregnancies as a method of natural birth control. METHODS: In a retrospective analysis, the application's efficiency as a contraceptive method was examined on data from 4054 women who used the application as contraception for a total of 2085 woman-years. RESULTS: The number of identified unplanned pregnancies was 143 during 2053 woman-years, giving a Pearl Index of 7.0 for typical use. Ten of the pregnancies were due to the application falsely attributing a safe day within the fertile window, producing a perfect-use Pearl Index of 0.5. Calculating the cumulative pregnancy probability by life-table analysis resulted in a pregnancy rate of 7.5% per year (95% confidence interval 5.9%, 9.1% per year). CONCLUSIONS: The application appears to improve the effectiveness of fertility awareness-based methods and can be used to prevent pregnancies if couples consistently protect themselves on fertile days.


Asunto(s)
Conducta Anticonceptiva/estadística & datos numéricos , Anticoncepción/métodos , Fertilidad , Aplicaciones Móviles , Detección de la Ovulación/métodos , Adolescente , Adulto , Algoritmos , Índice de Masa Corporal , Temperatura Corporal , Femenino , Humanos , Tablas de Vida , Persona de Mediana Edad , Aplicaciones Móviles/normas , Detección de la Ovulación/normas , Embarazo , Índice de Embarazo , Embarazo no Deseado , Estudios Retrospectivos , Encuestas y Cuestionarios , Suecia , Adulto Joven
12.
J Chem Phys ; 142(4): 044505, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25637993

RESUMEN

The structure of bulk liquid water was recently probed by x-ray scattering below the temperature limit of homogeneous nucleation (TH) of ∼232 K [J. A. Sellberg et al., Nature 510, 381-384 (2014)]. Here, we utilize a similar approach to study the structure of bulk liquid water below TH using oxygen K-edge x-ray emission spectroscopy (XES). Based on previous XES experiments [T. Tokushima et al., Chem. Phys. Lett. 460, 387-400 (2008)] at higher temperatures, we expected the ratio of the 1b1' and 1b1″ peaks associated with the lone-pair orbital in water to change strongly upon deep supercooling as the coordination of the hydrogen (H-) bonds becomes tetrahedral. In contrast, we observed only minor changes in the lone-pair spectral region, challenging an interpretation in terms of two interconverting species. A number of alternative hypotheses to explain the results are put forward and discussed. Although the spectra can be explained by various contributions from these hypotheses, we here emphasize the interpretation that the line shape of each component changes dramatically when approaching lower temperatures, where, in particular, the peak assigned to the proposed disordered component would become more symmetrical as vibrational interference becomes more important.

13.
Phys Rev Lett ; 113(15): 153002, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-25375708

RESUMEN

We report on oxygen K-edge soft x-ray emission spectroscopy from a liquid water jet at the Linac Coherent Light Source. We observe significant changes in the spectral content when tuning over a wide range of incident x-ray fluences. In addition the total emission yield decreases at high fluences. These modifications result from reabsorption of x-ray emission by valence-excited molecules generated by the Auger cascade. Our observations have major implications for future x-ray emission studies at intense x-ray sources. We highlight the importance of the x-ray pulse length with respect to the core-hole lifetime.


Asunto(s)
Modelos Teóricos , Espectrometría por Rayos X/métodos , Absorción Fisicoquímica , Rayos Láser , Rayos X
14.
J Chem Phys ; 141(3): 034507, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-25053326

RESUMEN

The effect of crystal growth conditions on the O K-edge x-ray absorption spectra of ice is investigated through detailed analysis of the spectral features. The amount of ice defects is found to be minimized on hydrophobic surfaces, such as BaF2(111), with low concentration of nucleation centers. This is manifested through a reduction of the absorption cross-section at 535 eV, which is associated with distorted hydrogen bonds. Furthermore, a connection is made between the observed increase in spectral intensity between 544 and 548 eV and high-symmetry points in the electronic band structure, suggesting a more extended hydrogen-bond network as compared to ices prepared differently. The spectral differences for various ice preparations are compared to the temperature dependence of spectra of liquid water upon supercooling. A double-peak feature in the absorption cross-section between 540 and 543 eV is identified as a characteristic of the crystalline phase. The connection to the interpretation of the liquid phase O K-edge x-ray absorption spectrum is extensively discussed.

15.
ACS Phys Chem Au ; 4(4): 385-392, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39069981

RESUMEN

Water and ice are routinely studied with X-rays to reveal their diverse structures and anomalous properties. We employ a hybrid collisional-radiative/molecular-dynamics method to explore how femtosecond X-ray pulses interact with hexagonal ice. We find that ice makes a phase transition into a crystalline plasma where its initial structure is maintained up to tens of femtoseconds. The ultrafast melting process occurs anisotropically, where different geometric configurations of the structure melt on different time scales. The transient state and anisotropic melting of crystals can be captured by X-ray diffraction, which impacts any study of crystalline structures probed by femtosecond X-ray lasers.

16.
Light Sci Appl ; 13(1): 15, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216563

RESUMEN

The idea of using ultrashort X-ray pulses to obtain images of single proteins frozen in time has fascinated and inspired many. It was one of the arguments for building X-ray free-electron lasers. According to theory, the extremely intense pulses provide sufficient signal to dispense with using crystals as an amplifier, and the ultrashort pulse duration permits capturing the diffraction data before the sample inevitably explodes. This was first demonstrated on biological samples a decade ago on the giant mimivirus. Since then, a large collaboration has been pushing the limit of the smallest sample that can be imaged. The ability to capture snapshots on the timescale of atomic vibrations, while keeping the sample at room temperature, may allow probing the entire conformational phase space of macromolecules. Here we show the first observation of an X-ray diffraction pattern from a single protein, that of Escherichia coli GroEL which at 14 nm in diameter is the smallest biological sample ever imaged by X-rays, and demonstrate that the concept of diffraction before destruction extends to single proteins. From the pattern, it is possible to determine the approximate orientation of the protein. Our experiment demonstrates the feasibility of ultrafast imaging of single proteins, opening the way to single-molecule time-resolved studies on the femtosecond timescale.

17.
Struct Dyn ; 10(4): 044302, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37577135

RESUMEN

The direct observation of the structure of micrometer-sized vapor-deposited ice is performed at Pohang Accelerator Laboratory x-ray free electron laser (PAL-XFEL). The formation of micrometer-sized ice crystals and their structure is important in various fields, including atmospheric science, cryobiology, and astrophysics, but understanding the structure of micrometer-sized ice crystals remains challenging due to the lack of direct observation. Using intense x-ray diffraction from PAL-XFEL, we could observe the structure of micrometer-sized vapor-deposited ice below 150 K with a thickness of 2-50 µm grown in an ultrahigh vacuum chamber. The structure of the ice grown comprises cubic and hexagonal sequences that are randomly arranged to produce a stacking-disordered ice. We observed that ice with a high cubicity of more than 80% was transformed to partially oriented hexagonal ice when the thickness of the ice deposition grew beyond 5 µm. This suggests that precise temperature control and clean deposition conditions allow µm-thick ice films with high cubicity to be grown on hydrophilic Si3N4 membranes. The low influence of impurities could enable in situ diffraction experiments of ice nucleation and growth from interfacial layers to bulk ice.

18.
Science ; 382(6674): 1015-1020, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38033070

RESUMEN

Photolyase is an enzyme that uses light to catalyze DNA repair. To capture the reaction intermediates involved in the enzyme's catalytic cycle, we conducted a time-resolved crystallography experiment. We found that photolyase traps the excited state of the active cofactor, flavin adenine dinucleotide (FAD), in a highly bent geometry. This excited state performs electron transfer to damaged DNA, inducing repair. We show that the repair reaction, which involves the lysis of two covalent bonds, occurs through a single-bond intermediate. The transformation of the substrate into product crowds the active site and disrupts hydrogen bonds with the enzyme, resulting in stepwise product release, with the 3' thymine ejected first, followed by the 5' base.


Asunto(s)
Desoxirribodipirimidina Fotoliasa , Cristalografía , Desoxirribodipirimidina Fotoliasa/química , Desoxirribodipirimidina Fotoliasa/metabolismo , Reparación del ADN , Daño del ADN , Transporte de Electrón
19.
Nat Commun ; 13(1): 4708, 2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35953469

RESUMEN

The European X-ray Free Electron Laser (XFEL) and Linac Coherent Light Source (LCLS) II are extremely intense sources of X-rays capable of generating Serial Femtosecond Crystallography (SFX) data at megahertz (MHz) repetition rates. Previous work has shown that it is possible to use consecutive X-ray pulses to collect diffraction patterns from individual crystals. Here, we exploit the MHz pulse structure of the European XFEL to obtain two complete datasets from the same lysozyme crystal, first hit and the second hit, before it exits the beam. The two datasets, separated by <1 µs, yield up to 2.1 Å resolution structures. Comparisons between the two structures reveal no indications of radiation damage or significant changes within the active site, consistent with the calculated dose estimates. This demonstrates MHz SFX can be used as a tool for tracking sub-microsecond structural changes in individual single crystals, a technique we refer to as multi-hit SFX.


Asunto(s)
Electrones , Rayos Láser , Cristalografía por Rayos X , Radiografía , Rayos X
20.
Sci Rep ; 11(1): 5025, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33658544

RESUMEN

Bioconversion of organic materials is the foundation of many applications in chemical engineering, microbiology and biochemistry. Herein, we introduce a new methodology to quantitatively determine conversion of biomass in viral infections while simultaneously imaging morphological changes of the host cell. As proof of concept, the viral replication of an unidentified giant DNA virus and the cellular response of an amoebal host are studied using soft X-ray microscopy, titration dilution measurements and thermal gravimetric analysis. We find that virions produced inside the cell are visible from 18 h post infection and their numbers increase gradually to a burst size of 280-660 virions. Due to the large size of the virion and its strong X-ray absorption contrast, we estimate that the burst size corresponds to a conversion of 6-12% of carbonaceous biomass from amoebal host to virus. The occurrence of virion production correlates with the appearance of a possible viral factory and morphological changes in the phagosomes and contractile vacuole complex of the amoeba, whereas the nucleus and nucleolus appear unaffected throughout most of the replication cycle.


Asunto(s)
Acanthamoeba/virología , Virus ADN/ultraestructura , ADN Viral/genética , Genoma Viral , Virus Gigantes/ultraestructura , Virión/ultraestructura , Acanthamoeba/ultraestructura , Biomasa , Virus ADN/genética , Virus ADN/crecimiento & desarrollo , Virus ADN/aislamiento & purificación , ADN Viral/biosíntesis , Virus Gigantes/genética , Virus Gigantes/crecimiento & desarrollo , Virus Gigantes/aislamiento & purificación , Interacciones Huésped-Patógeno/genética , Fagosomas/ultraestructura , Fagosomas/virología , Microbiología del Suelo , Termogravimetría , Vacuolas/ultraestructura , Vacuolas/virología , Virión/genética , Virión/crecimiento & desarrollo , Replicación Viral , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA