Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(6): 3327-3345, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38197223

RESUMEN

LINE-1 (L1) retrotransposons are mobile genetic elements that create new genomic insertions by a copy-paste mechanism involving L1 RNA/RNP intermediates. L1 encodes two ORFs, of which L1-ORF2p nicks genomic DNA and reverse transcribes L1 mRNA using the nicked DNA as a primer which base-pairs with poly(A) tail of L1 mRNA. To better understand the importance of non-templated L1 3' ends' dynamics and the interplay between L1 3' and 5' ends, we investigated the effects of genomic knock-outs and temporal knock-downs of XRN1, DCP2, and other factors. We hypothesized that in the absence of XRN1, the major 5'→3' exoribonuclease, there would be more L1 mRNA and retrotransposition. Conversely, we observed that loss of XRN1 decreased L1 retrotransposition. This occurred despite slight stabilization of L1 mRNA, but with decreased L1 RNP formation. Similarly, loss of DCP2, the catalytic subunit of the decapping complex, lowered retrotransposition despite increased steady-state levels of L1 proteins. In both XRN1 and DCP2 depletions we observed shortening of L1 3' poly(A) tails and their increased uridylation by TUT4/7. We explain the observed reduction of L1 retrotransposition by the changed qualities of non-templated L1 mRNA 3' ends demonstrating the important role of L1 3' end dynamics in L1 biology.


Asunto(s)
Elementos de Nucleótido Esparcido Largo , ARN Mensajero , Humanos , Células HeLa , Retroelementos/genética , ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
Funct Integr Genomics ; 23(3): 278, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37610667

RESUMEN

Transposable elements, often referred to as "jumping genes," have long been recognized as genomic parasites due to their ability to integrate and disrupt normal gene function and induce extensive genomic alterations, thereby compromising the host's fitness. To counteract this, the host has evolved a plethora of mechanisms to suppress the activity of the transposons. Recent research has unveiled the host-transposon relationships to be nuanced and complex phenomena, resulting in the coevolution of both entities. Transposition increases the mutational rate in the host genome, often triggering physiological pathways such as immune and stress responses. Current gene transfer technologies utilizing transposable elements have potential drawbacks, including off-target integration, induction of mutations, and modifications of cellular machinery, which makes an in-depth understanding of the host-transposon relationship imperative. This review highlights the dynamic interplay between the host and transposable elements, encompassing various factors and components of the cellular machinery. We provide a comprehensive discussion of the strategies employed by transposable elements for their propagation, as well as the mechanisms utilized by the host to mitigate their parasitic effects. Additionally, we present an overview of recent research identifying host proteins that act as facilitators or inhibitors of transposition. We further discuss the evolutionary outcomes resulting from the genetic interactions between the host and the transposable elements. Finally, we pose open questions in this field and suggest potential avenues for future research.


Asunto(s)
Parásitos , Animales , Parásitos/genética , Elementos Transponibles de ADN/genética , Genómica , Mutación
3.
Wiley Interdiscip Rev RNA ; 13(3): e1694, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34553495

RESUMEN

CRISPR-Cas are adaptable natural prokaryotic defense systems that act against invading viruses and plasmids. Among the six currently known major CRISPR-Cas types, the type VI CRISPR-Cas13 is the only one known to exclusively bind and cleave foreign RNA. Within the last couple of years, this system has been adapted to serve numerous, and sometimes not obvious, applications, including some that might be developed as effective molecular therapies. Indeed, Cas13 has been adapted to kill antibiotic-resistant bacteria. In a cell-free environment, Cas13 has been used in the development of highly specific, sensitive, multiplexing-capable, and field-adaptable detection tools. Importantly, Cas13 can be reprogrammed and applied to eukaryotes to either combat pathogenic RNA viruses or in the regulation of gene expression, facilitating the knockdown of mRNA, circular RNA, and noncoding RNA. Furthermore, Cas13 has been harnessed for in vivo RNA modifications including programmable regulation of alternative splicing, A-to-I and C to U editing, and m6A modifications. Finally, approaches allowing for the detection and characterization of RNA-interacting proteins have also been demonstrated. Here, we provide a comprehensive overview of the applications utilizing CRISPR-Cas13 that illustrate its versatility. We also discuss the most important limitations of the CRISPR-Cas13-based technologies, and controversies regarding them. This article is categorized under: RNA Methods > RNA Analyses in Cells RNA Processing > RNA Editing and Modification RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Edición Génica/métodos , ARN/genética , Edición de ARN , Procesamiento Postranscripcional del ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA