Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Biol Chem ; 300(6): 107315, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663827

RESUMEN

Lewy bodies (LB) are aberrant protein accumulations observed in the brain cells of individuals affected by Parkinson's disease (PD). A comprehensive analysis of LB proteome identified over a hundred proteins, many co-enriched with α-synuclein, a major constituent of LB. Within this context, OTUB1, a deubiquitinase detected in LB, exhibits amyloidogenic properties, yet the mechanisms underlying its aggregation remain elusive. In this study, we identify two critical sites in OTUB1-namely, positions 133 and 173-that significantly impact its amyloid aggregation. Substituting alanine at position 133 and lysine at position 173 enhances both thermodynamic and kinetic stability, effectively preventing amyloid aggregation. Remarkably, lysine at position 173 demonstrates the highest stability without compromising enzymatic activity. The increased stability and inhibition of amyloid aggregation are attributed mainly to the changes in the specific microenvironment at the hotspot. In our exploration of the in-vivo co-occurrence of α-synuclein and OTUB1 in LB, we observed a synergistic modulation of each other's aggregation. Collectively, our study unveils the molecular determinants influencing OTUB1 aggregation, shedding light on the role of specific residues in modulating aggregation kinetics and structural transition. These findings contribute valuable insights into the complex interplay of amino acid properties and protein aggregation, with potential implications for understanding broader aspects of protein folding and aggregation phenomena.


Asunto(s)
alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/genética , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/química , Enzimas Desubicuitinizantes/metabolismo , Enzimas Desubicuitinizantes/química , Agregado de Proteínas , Cuerpos de Lewy/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Amiloide/metabolismo , Amiloide/química , Estabilidad Proteica , Estabilidad de Enzimas , Cinética
2.
Phys Chem Chem Phys ; 25(40): 27744-27755, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37814577

RESUMEN

Double-stranded DNA bears the highest linear negative charge density (2e- per base-pair) among all biopolymers, leading to strong interactions with cations and dipolar water, resulting in the formation of a dense 'condensation layer' around DNA. Interactions involving proteins and ligands binding to DNA are primarily governed by strong electrostatic forces. Increased salt concentrations impede such electrostatic interactions - a situation that prevails in oceanic species due to their cytoplasm being enriched with salts. Nevertheless, how these interactions' dynamics are affected in crowded hypersaline environments remains largely unexplored. Here, we employ steady-state and time-resolved fluorescence Stokes shifts (TRFSS) of a DNA-bound ligand (DAPI) to investigate the static and dynamic solvation properties of DNA in the presence of two divalent cations, magnesium (Mg2+), and calcium (Ca2+) at varying high to very-high concentrations of 0.15 M, 1 M and 2 M. We compare the results to those obtained in physiological concentrations (0.15 M) of monovalent Na+ ions. Combining data from fluorescence femtosecond optical gating (FOG) and time-correlated single photon counting (TCSPC) techniques, dynamic fluorescence Stokes shifts in DNA are analysed over a broad range of time-scales, from 100 fs to 10 ns. We find that while divalent cation crowding strongly influences the DNA stability and ligand binding affinity to DNA, the dynamics of DNA solvation remain remarkably similar across a broad range of five decades in time, even in a high-salinity crowded environment with divalent cations, as compared to the physiological concentration of the Na+ ion. Steady-state and time-resolved data of the DNA-groove-bound ligand are seemingly unaffected by ion-crowding in hypersaline solution, possibly due to ions being mostly displaced by the DNA-bound ligand. Furthermore, the dynamic coupling of cations with nearby water may possibly contribute to a net-neutral effect on the overall collective solvation dynamics in DNA, owing to the strong anti-correlation of their electrostatic interaction energy fluctuations. Such dynamic scenarios may persist within the cellular environment of marine life and other biological cells that experience hypersaline conditions.


Asunto(s)
ADN , Salinidad , Cationes Bivalentes , Ligandos , ADN/química , Iones , Sodio , Agua/química , Cationes , Cationes Monovalentes
3.
Biophys J ; 118(2): 352-365, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31866002

RESUMEN

Prevalence of one or more partially folded intermediates during protein unfolding with different secondary and ternary conformations has been identified as an integral character of protein unfolding. These transition-state species need to be characterized structurally for elucidation of their folding pathways. We have determined the three-dimensional structure of an intermediate state with increased conformational space sampling under urea-denaturing condition. The protein unfolds completely at 10 M urea but retains residual secondary structural propensities with restricted motion. Here, we describe the native state, observable intermediate state, and unfolded state for ETR-3 RRM-3, which has canonical RRM fold. These observations can shed more light on unfolding events for RRM-containing proteins.


Asunto(s)
Proteínas del Tejido Nervioso/química , Desplegamiento Proteico , Simulación de Dinámica Molecular , Desnaturalización Proteica/efectos de los fármacos , Dominios Proteicos , Temperatura , Urea/farmacología
4.
Biochim Biophys Acta Biomembr ; 1859(10): 1778-1789, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28559186

RESUMEN

The present study examines the kinetics of steroids efflux mediated by the Candida drug resistance protein 1 (Cdr1p) and evaluates their interaction with the protein. We exploited our in-house mutant library for targeting the 252 residues forming the twelve transmembrane helices (TMHs) of Cdr1p. The screening revealed 65 and 58 residues critical for ß-estradiol and corticosterone transport, respectively. Notably, up to 83% critical residues for corticosterone face the lipid interface compared to 54% for ß-estradiol. Molecular docking identified a possible peripheral corticosterone-binding site made of 8/14 critical/non-critical residues between TMHs 3, 4 and 6. ß-estradiol transport was severely hampered by alanine replacements of Cdr1p core residues involving TMHs 2, 5 and 8, in a binding site made of 10/14 critical residues mainly shared with rhodamine 6G with which it competes. By contrast, TMH11 was poorly impacted, although being part of the core domain. Finally, we observed the presence of several contiguous stretches of 3-5 critical residues in TMHs 2, 5 and 10 that points to a rotation motion of these helices during the substrate transport cycle. The selective structural arrangement of the steroid-binding pockets in the core region and at the lipid-TMD interface, which was never reported before, together with the possible rotation of some TMHs may be the structural basis of the drug-transport mechanism achieved by these type II ABC transporters.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Sitios de Unión/fisiología , Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Hormonas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Esteroides/metabolismo , Transporte Biológico/fisiología , Humanos , Lípidos/fisiología , Simulación del Acoplamiento Molecular/métodos , Estructura Secundaria de Proteína
5.
Phys Chem Chem Phys ; 19(38): 25870-25885, 2017 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-28726898

RESUMEN

Despite significant interest in understanding the role of the local dielectric environment and lipid-bilayer fluidity/rigidity in resonance energy transfer between chromophores at lipid/water interfaces, a comprehensive approach to quantify such environmental dependence on energy transfer is missing - primarily because of the scarcity of suitable probes. Here we present the results on multi-chromophoric Förster resonance energy transfer (FRET) from a series of 4-aminophthalimide-based molecules (4AP-Cn; n = 2-10, 12) of different lipophilicity (donors), which reside at different depths across the lipid/water interfaces, to rhodamine-6G (Rh6G; acceptor) molecules that stay in a water-rich region near the lipid headgroups. We apply steady-state and time-resolved fluorescence spectroscopy, and find that multi-chromophoric FRET from the series of 4AP-Cn donors to the Rh6G acceptor occurs in a peculiar stepwise fashion at the lipid/water interface of a gel-phase (Lß') DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) bilayer at room temperature. However, the same donor-acceptor pairs show only subtle but continuous donor-depth-dependent FRET at the lipid/water interface of a fluid-phase (Lα) DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) bilayer. These features were found to correlate with the lipid-phase dependent local environmental polarity sensed by 4AP-Cn donors at the interfaces. Molecular dynamics (MD) simulations, combined with experimental results, show that relative depth (and angle) variation of the 4AP-Cn donors and Rh6G acceptor directly controls the FRET efficiencies through fine tuning of the emission and absorption spectra of the donors and acceptor, respectively. The results indicate that the 4AP-Cn probes are well-suited as donors for FRET studies, which allow the FRET parameters at lipid/water interfaces of gel- and fluid-phases of lipid-bilayers to be quantified and compared simultaneously.


Asunto(s)
Transferencia de Energía , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Fosfatidilcolinas , Ftalimidas , Rodaminas , Agua
7.
Phys Chem Chem Phys ; 18(35): 24185-97, 2016 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-27147404

RESUMEN

Environment polarity and hydration at lipid/water interfaces play important roles in membrane biology, which are investigated here using a new homologous series of 4-aminophthalimide-based fluorescent molecules (4AP-Cn; n = 2-10, 12) having different lipophilicities (octanol/water partition coefficient - log P). We show that 4AP-Cn molecules probe a peculiar stepwise polarity (E) profile at the lipid/water interface of the gel-phase (Lß') DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) bilayer at room temperature, which was not anticipated in earlier studies. However, the same molecules probe only a subtle but continuous polarity change at the interface of water and the fluid-phase (Lα) DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) bilayer at room temperature. Fluorescence quenching experiments indicate that solutes with different log P values adsorb at different depths across DPPC/water and DOPC/water interfaces, which correlate with the polarity profiles observed at the interfaces. Molecular dynamics simulations performed on eight probe-lipid systems (four in each of the DPPC and DOPC bilayers - a total run of 2.6 µs) support experimental results, providing further information on the relative position and angle distributions as well as hydration of probes at the interfaces. Simulation results indicate that besides positions, probe orientations also play an important role in defining the local dielectric environment by controlling the probes' exposure to water at the interfaces especially of the gel-phase DPPC bilayer. The results suggest that 4AP-Cn probes are well suited for studying solvation properties at lipid/water interfaces of gel- and fluid-phases simultaneously.

8.
J Biol Chem ; 288(23): 16775-16787, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23592791

RESUMEN

Drug-resistant pathogenic fungi use several families of membrane-embedded transporters to efflux antifungal drugs from the cells. The efflux pump Cdr1 (Candida drug resistance 1) belongs to the ATP-binding cassette (ABC) superfamily of transporters. Cdr1 is one of the most predominant mechanisms of multidrug resistance in azole-resistant (AR) clinical isolates of Candida albicans. Blocking drug efflux represents an attractive approach to combat the multidrug resistance of this opportunistic human pathogen. In this study, we rationally designed and synthesized transmembrane peptide mimics (TMPMs) of Cdr1 protein (Cdr1p) that correspond to each of the 12 transmembrane helices (TMHs) of the two transmembrane domains of the protein to target the primary structure of the Cdr1p. Several FITC-tagged TMPMs specifically bound to Cdr1p and blocked the efflux of entrapped fluorescent dyes from the AR (Gu5) isolate. These TMPMs did not affect the efflux of entrapped fluorescent dye from cells expressing the Cdr1p homologue Cdr2p or from cells expressing a non-ABC transporter Mdr1p. Notably, the time correlation of single photon counting fluorescence measurements confirmed the specific interaction of FITC-tagged TMPMs with their respective TMH. By using mutant variants of Cdr1p, we show that these TMPM antagonists contain the structural information necessary to target their respective TMHs of Cdr1p and specific binding sites that mediate the interactions between the mimics and its respective helix. Additionally, TMPMs that were devoid of any demonstrable hemolytic, cytotoxic, and antifungal activities chemosensitize AR clinical isolates and demonstrate synergy with drugs that further improved the therapeutic potential of fluconazole in vivo.


Asunto(s)
Antifúngicos/farmacología , Azoles , Materiales Biomiméticos/farmacología , Candida albicans/metabolismo , Farmacorresistencia Fúngica/efectos de los fármacos , Proteínas Fúngicas/antagonistas & inhibidores , Péptidos/farmacología , Antifúngicos/química , Materiales Biomiméticos/química , Candida albicans/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Péptidos/química , Estructura Secundaria de Proteína
9.
J Biol Chem ; 288(34): 24480-93, 2013 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-23824183

RESUMEN

The fungal ATP-binding cassette (ABC) transporter Cdr1 protein (Cdr1p), responsible for clinically significant drug resistance, is composed of two transmembrane domains (TMDs) and two nucleotide binding domains (NBDs). We have probed the nature of the drug binding pocket by performing systematic mutagenesis of the primary sequences of the 12 transmembrane segments (TMSs) found in the TMDs. All mutated proteins were expressed equally well and localized properly at the plasma membrane in the heterologous host Saccharomyces cerevisiae, but some variants differed significantly in efflux activity, substrate specificity, and coupled ATPase activity. Replacement of the majority of the amino acid residues with alanine or glycine yielded neutral mutations, but about 42% of the variants lost resistance to drug efflux substrates completely or selectively. A predicted three-dimensional homology model shows that all the TMSs, apart from TMS4 and TMS10, interact directly with the drug-binding cavity in both the open and closed Cdr1p conformations. However, TMS4 and TMS10 mutations can also induce total or selective drug susceptibility. Functional data and homology modeling assisted identification of critical amino acids within a drug-binding cavity that, upon mutation, abolished resistance to all drugs tested singly or in combinations. The open and closed Cdr1p models enabled the identification of amino acid residues that bordered a drug-binding cavity dominated by hydrophobic residues. The disposition of TMD residues with differential effects on drug binding and transport are consistent with a large polyspecific drug binding pocket in this yeast multidrug transporter.


Asunto(s)
Candida albicans/metabolismo , Farmacorresistencia Fúngica/fisiología , Proteínas Fúngicas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Sustitución de Aminoácidos , Transporte Biológico Activo/fisiología , Candida albicans/química , Candida albicans/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Mutación Missense , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
10.
Methods Appl Fluoresc ; 12(4)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39013401

RESUMEN

Guanine-rich single-stranded DNA folds into G-quadruplex DNA (GqDNA) structures, which play crucial roles in various biological processes. These structures are also promising targets for ligands, potentially inducing antitumor effects. While thermodynamic parameters of ligand/DNA interactions are well-studied, the kinetics of ligand interaction with GqDNA, particularly in cell-like crowded environments, remain less explored. In this study, we investigate the impact of molecular crowding agents (glucose, sucrose, and ficoll 70) at physiologically relevant concentrations (20% w/v) on the association and dissociation rates of the benzophenoxazine-core based ligand, cresyl violet (CV), with human telomeric antiparallel-GqDNA. We utilized fluorescence correlation spectroscopy (FCS) along with other techniques. Our findings reveal that crowding agents decrease the binding affinity of CV to GqDNA, with the most significant effect-a nearly three-fold decrease-observed with ficoll 70. FCS measurements indicate that this decrease is primarily due to a viscosity-induced slowdown of ligand association in the crowded environment. Interestingly, dissociation rates remain largely unaffected by smaller crowders, with only small effect observed in presence of ficoll 70 due to direct but weak interaction between the ligand and ficoll. These results along with previously reported data provide valuable insights into ligand/GqDNA interactions in cellular contexts, suggesting a conserved mechanism of saccharide crowder influence, regardless of variations in GqDNA structure and ligand binding mode. This underscores the importance of considering crowding effects in the design and development of GqDNA-targeted drugs for potential cancer treatment.


Asunto(s)
G-Cuádruplex , Espectrometría de Fluorescencia , Espectrometría de Fluorescencia/métodos , Ligandos , Cinética , Humanos , ADN/química
11.
ACS Infect Dis ; 10(8): 2836-2859, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39024306

RESUMEN

Accurate detection of bacterial antibiotic sensitivity is crucial for theranostics and the containment of antibiotic-resistant infections. However, the intricate task of detecting and quantifying the antibiotic-induced changes in the bacterial cytoplasmic membrane, and their correlation with other metabolic pathways leading to antibiotic resistance, poses significant challenges. Using a novel class of 4-aminophthalimide (4AP)-based fluorescent dyes with precisely tailored alkyl chains, namely 4AP-C9 and 4AP-C13, we quantify stress-mediated alterations in E. coli membranes. Leveraging the unique depth-dependent positioning and environment-sensitive fluorescence properties of these dyes, we detect antibiotic-induced membrane damage through single-cell imaging and monitoring the fluorescence peak maxima difference ratio (PMDR) of the dyes within the bacterial membrane, complemented by other methods. The correlation between the ROS-induced cytoplasmic membrane damage and the PMDR of dyes quantifies sensitivity against bactericidal antibiotics, which correlates to antibiotic-induced lipid peroxidation. Significantly, our findings largely extend to clinical isolates of E. coli and other ESKAPE pathogens like K. pneumoniae and Enterobacter subspecies. Our data reveal that 4AP-Cn probes can potentially act as precise scales to detect antibiotic-induced membrane damage ("thinning") occurring at a subnanometer scale through the quantification of dyes' PMDR, making them promising membrane dyes for rapid detection of bacterial antibiotic resistance, distinguishing sensitive and resistant infections with high specificity in a clinical setup.


Asunto(s)
Antibacterianos , Membrana Celular , Escherichia coli , Colorantes Fluorescentes , Pruebas de Sensibilidad Microbiana , Colorantes Fluorescentes/química , Escherichia coli/efectos de los fármacos , Antibacterianos/farmacología , Membrana Celular/efectos de los fármacos , Farmacorresistencia Bacteriana , Humanos , Enterobacter/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos
12.
J Am Chem Soc ; 134(48): 19677-84, 2012 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-23140268

RESUMEN

Even though nanostructures of various shapes and sizes can be controlled by microemulsions, there is substantial difficulty in understanding their growth mechanism. The evolution of nanostructures from the time of mixing of reactants to their final stage is a heterogeneous process involving a variety of intermediates. To obtain a deeper insight into these kinetic steps, we studied the slow growth kinetics (extending over eight days) of iron oxalate nanorods inside the polar core of water-in-oil microemulsion droplets made of cetyltrimethylammonium bromide/1-butanol/isooctane. Fluorescence correlation spectroscopy (FCS), dynamic light scattering (DLS), and transmission electron microscopy (TEM) have been employed to monitor the nanostructure growth at (near) the single-droplet level and in an ensemble. Analyzing FCS data with suitable kinetic model we obtain transient dimer lifetime (28 µs) and the droplet fusion rates (and fusion tendency) on each day as the reaction proceeds. The droplet fusion rate is found to directly control the nanorod growth in microemulsion solution and attains its maximum value (3.55 × 10(4) s(-1)) on day 6, when long nanorods are found in TEM data, implying that more and more reactants are fed into the growing system at this stage. Combining FCS, DLS, and TEM results, we find three distinct periods in the entire growth process: a long nucleation-dominant nanoparticle growth period which forms nanoparticles of critical (average) size of ∼53 nm, followed by a short period where isotropic nanoparticles switch to anisotropic growth to form nanorods, and finally elongation of nanorods and growth (and shrinking) of nanoparticles.

13.
Anal Chem ; 84(16): 7218-26, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22816788

RESUMEN

The study of ligand interaction with G-quadruplex DNA is an active research area, because many ligands are shown to bind G-quadruplex structures, showing anticancer effects. Here, we show, for the first time, how fluorescence correlation spectroscopy (FCS) can be used to study binding kinetics of ligands with G-quadruplex DNA at the single molecule level. As an example, we study interaction of a benzo-phenoxazine ligand (Cresyl Violet, CV) with antiparallel and (3 + 1) hybrid G-quadruplex structures formed by human telomeric sequence. By using simple modifications in FCS setup, we describe how one can extract the reaction kinetics from diffusion-coupled correlation curves. It is found that the ligand (CV) binds stronger, by an order of magnitude, to a (3 + 1) hybrid structure, compared to an antiparallel one. Ensemble-averaged time-resolved fluorescence experiments are also carried out to obtain the binding equilibrium constants (K) of ligand-quadruplex interactions in bulk solution for the first time, which are found to match very well with FCS results. Global analysis of FCS data provides association (k(+)) and dissociation (k(-)) rates of the ligand in the two structures. Results indicate that stronger ligand binding to the (3 + 1) hybrid structure is controlled by the dissociation rate, rather than the association rate of ligand in the quadruplexes. Circular dichroism (CD) and induced-CD spectra show that the ligand not only binds at different conformations in the quadruplexes, but also induces antiparallel structure to form a mixed-type hybrid structure in Na(+) solution. However, in K(+) solution, the ligand stabilizes the (3 + 1) hybrid structure. Molecular docking studies predict the possible differences in binding sites of the ligand inside two quadruplexes, which strongly support the experimental observations. Results suggest that different binding modes of the ligand to the quadruplex structures actually assist the alteration of structures differently.


Asunto(s)
G-Cuádruplex/efectos de los fármacos , Benzoxazinas , Línea Celular Tumoral , Humanos , Cinética , Ligandos , Simulación del Acoplamiento Molecular , Oxazinas/metabolismo , Oxazinas/farmacología , Espectrometría de Fluorescencia , Factores de Tiempo
14.
J Phys Chem B ; 126(32): 6007-6015, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35939531

RESUMEN

Probing the kinetics of ligand binding to biomolecules is of paramount interest in biology and pharmacology. Measurements of such kinetic processes provide information on the rate-determining steps that control the binding affinity of ligands to biomolecules, thereby predicting the mechanism of the molecular interaction. In this context, ligand binding to G-quadruplex DNA (GqDNA) structures has attracted tremendous attention primarily because of their use in possible anticancer therapy. Although a large number of G-quadruplex-specific ligands have been proposed, probing the kinetics of G-tetrad-selective binding of (multiple) ligands within a G-quadruplex DNA (GqDNA) structure remains challenging. Most of the earlier studies focused on the thermodynamics of ligand binding; however, the kinetics of ligand association and dissociation with GqDNA, particularly binding of multiple ligands within a GqDNA structure, have not been explored. Here, we propose a simple fluorescence correlation spectroscopy-based method that measures the G-tetrad-selective association and dissociation rates of ligands within a GqDNA structure by correlating the fluorescence fluctuations of a site-specific (5' or 3' end-labeled) fluorophore (Cy3) in GqDNA due to quenching of Cy3 fluorescence, induced by the ligand binding to the G-tetrads. We show that well-known GqDNA ligands, BRACO19, TMPyP4, Hoechst 33258, and Hoechst 33342, have G-tetrad-selective association and dissociation rates, which suggest site-dependent variation of free energy barriers for binding/unbinding of the ligands with GqDNA. We also show that the measured kinetic rates depend not only on the G-tetrad site (5' vs 3' end) but also on the ligand and GqDNA structures.


Asunto(s)
G-Cuádruplex , ADN/química , Ligandos , Espectrometría de Fluorescencia , Termodinámica
15.
J Phys Chem B ; 126(8): 1668-1681, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35170968

RESUMEN

Understanding molecular interactions and dynamics of proteins and DNA in a cell-like crowded environment is crucial for predicting their functions within the cell. Noncanonical G-quadruplex DNA (GqDNA) structures adopt various topologies that were shown to be strongly affected by molecular crowding. However, it is unknown how such crowding affects the solvation dynamics in GqDNA. Here, we study the effect of cosolvent (acetonitrile) crowding on ligand (DAPI) solvation dynamics within human telomeric antiparallel GqDNA through direct comparison of time-resolved fluorescence Stokes shift (TRFSS) experiments and molecular dynamics (MD) simulations results. We show that ligand binding affinity to GqDNA is drastically affected by acetonitrile (ACN). Solvation dynamics probed by DAPI in GqDNA groove show dispersed dynamics from ∼100 fs to 10 ns in the absence and presence of 20% and 40% (v/v) ACN. The nature of dynamics remain similar in buffer and 20% ACN, although in 40% ACN, distinct dynamics is observed in <100 ps. MD simulations performed on GqDNA/DAPI complex reveal preferential solvation of ligand by ACN, particularly in 40% ACN. Simulated solvation time-correlation functions calculated from MD trajectories compare very well to the overall solvation dynamics of DAPI in GqDNA, observed in experiments. Linear response decomposition of simulated solvation correlation functions unfolds the origin of dispersed dynamics, showing that the slower dynamics is dominated by DNA-motion in the presence of ACN (and also by the ACN dynamics at higher concentration). However, water-DNA coupled motion controls the slow dynamics in the absence of ACN. Our data, thus, unravel a detailed molecular picture showing that though ACN crowding affect ligand binding affinity to GqDNA significantly, the overall dispersed solvation dynamics in GqDNA remain similar in the absence and the presence of 20% ACN, albeit with a small effect on the dynamics in the presence of 40% ACN due to preferential solvation of ligand by ACN.


Asunto(s)
G-Cuádruplex , ADN/química , Humanos , Ligandos , Simulación de Dinámica Molecular , Telómero
16.
Chem Biol Interact ; 358: 109881, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35307378

RESUMEN

Stomach cancer causes the third-highest cancer-related deaths worldwide. Limited availability of anticancer measures with higher efficiency and low unwanted toxicities necessitates the development of better cancer chemotherapeutics. Naphthalene diimide (NDI) derivatives have gained significant attention owing to their excellent anticancer potential. We evaluated the anticancer properties of NDI derivatives, 1a and 2a in cancer cell lines and found that 1a showed higher efficacy as compared to 2a exhibiting a remarkable difference in activity upon single atom substitution of C with N. Particularly, NDI 1a showed potent inhibitory activity against gastric cancer cell line AGS with IC50 of 2.0 µM. NDI 1a induced remarkable morphological changes and reduced clonogenicity as well as the migratory ability of AGS cells. The reduction in AGS cell migration was mediated through inhibition of Tyr397 p-FAK dephosphorylation at focal adhesion points leading to enhanced attachment of cells at contact points. NDI 1a caused extensive DNA double-strand-breaks (DSBs) leading to activation of p53 and its transcriptional target p21. Reduced nuclear BRCA1 but enhanced nuclear p53BP1 foci formation upon 1a treatment suggests that DNA DSB repair is mediated through error-prone NHEJ which led to the accumulation of extensive DNA damage. Combinatorial effects mediated by interactions of 1a with double-stranded DNA through minor groove binding as well as induction of intracellular ROS exacerbated the loss of genomic integrity induced by 1a. NDI 1a mediated DNA damage-induced S phase arrest; however, cells experiencing extensive and irreparable DNA damage underwent mitochondrial apoptosis through downregulation of anti-apoptotic protein p21. Furthermore, proliferation inhibitory activity of 1a is also attributed to inhibition of ß-catenin/c-Myc axis in AGS cells with constitutively active ß-catenin pathway. In vivo toxicity analysis of 1a revealed minimal systemic toxicity suggesting that compound 1a is a safe and potential candidate for the development of gastric cancer chemotherapeutics.


Asunto(s)
Apoptosis , Ciclo Celular , Daño del ADN , Imidas , Naftalenos , Neoplasias Gástricas , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Humanos , Imidas/farmacología , Naftalenos/farmacología , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , beta Catenina
17.
ACS Appl Bio Mater ; 5(3): 1179-1186, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35179346

RESUMEN

An optical sensing platform for the detection of an important mycotoxin, aflatoxin B1 (AFB1), in the absence of a bioactive environment is explored. In this work, a fluorescence-based sensing technique was designed by combining graphene quantum dots (GQDs) and AFB1 via fluorescence quenching, where AFB1 acts as the quencher of GQD fluorescence. GQDs were synthesized through a single-step hydrothermal reaction from the leaves of "curry tree" (Murraya Koenigii) at 200 °C. The fluorescent GQDs were quenched by AFB1 (quencher), which itself is detecting the analyte. Hence, this study reports the direct sensing of the mycotoxin AFB1 without the involvement of inhibitors or biological entities. The possible mode of quenching is the nonradiative resonance energy transfer between the GQDs and the AFB1 molecules. This innovative sensor could detect AFB1 in the range from 5 to 800 ng mL-1 with a detection limit of 0.158 ng mL-1. The interferent study was also carried out in the presence of different mycotoxins and carbohydrates (d-fructose, cellulose, and starch), which demonstrated the high selectivity and robustness of the sensor in the complex sample matrix. The recovery percentage of the spiked samples was also calculated to be up to 106.8%. Thus, this study reports the first GQD based optical sensor for AFB1.


Asunto(s)
Grafito , Puntos Cuánticos , Aflatoxina B1/análisis , Transferencia de Energía , Espectrometría de Fluorescencia
18.
Anal Chem ; 83(20): 7736-44, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21899251

RESUMEN

Fluorescence correlation spectroscopy (FCS) is an ideal tool for measuring molecular diffusion and size under extremely dilute conditions. However, the power of FCS has not been utilized to its best to measure diffusion and size parameters of complex chemical systems. Here, we apply FCS to measure the size, and, most importantly, the size distribution and polydispersity of a supramolecular nanostructure (i.e., microemulsion droplets, MEDs) in dilute solution. It is shown how the refractive index mismatch of a solution can be corrected in FCS to obtain accurate size parameters of particles, bypassing the optical matching problem of light scattering techniques that are used often for particle-size measurements. We studied the MEDs of 13 different W(0) values from 2 to 50 prepared in a ternary mixture of water, sodium bis(2-ethylhexyl) sulfosuccinate (AOT), and isooctane, with sulforhodamine-B as a fluorescent marker. We find that, near the optical matching point of MEDs, the dynamic light scattering (DLS) measurements underestimate the droplet sizes while FCS estimates the accurate ones. A Gaussian distribution model (GDM) and a maximum-entropy-based FCS data fitting model (MEMFCS) are used to analyze the fluorescence correlation curves that unfold Gaussian-type size distributions of MEDs in solution. We find the droplet size varies linearly with W(0) up to ~20, but beyond this W(0) value, the size variation deviates from this linearity. To explain nonlinear variation of droplet size for W(0) values beyond ~20, we invoke a model (the coated-droplet model) that incorporates the size polydispersity of the droplets.


Asunto(s)
Emulsiones/química , Espectrometría de Fluorescencia , Difusión , Ácido Dioctil Sulfosuccínico/química , Luz , Nanoestructuras/química , Octanos/química , Tamaño de la Partícula , Rodaminas/química , Dispersión de Radiación , Soluciones/química
19.
J Am Chem Soc ; 132(27): 9277-9, 2010 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-20565076

RESUMEN

Time-resolved fluorescence Stokes shift dynamics of a fluorescent probe, 4',6-diamidino-2-phenylindole (DAPI), inside the minor groove of the DNA is measured over five decades in time spans from 100 fs to 10 ns. Two different techniques, fluorescence up-conversion and time correlated single photon counting, are combined to obtain the time-resolved emission spectra of DAPI in DNA over the entire five decades in time. Having the dynamics of groove-bound DAPI in DNA measured over such a broad time window, we are able to convincingly compare our data to earlier time-resolved fluorescence results of a base-stacked probe that replaces a DNA base pair. Results show that the dynamics measured with either the groove-bound or the base-stacked probe are similar in the time span of 100 fs to approximately 100 ps but differ substantially from approximately 100 ps to 10 ns. Our present data also help to reconcile the previously reported molecular dynamics simulation results and provide important clues that the groove-bound water molecules inside DNA are mainly responsible for the slow dynamics seen in native DNA.


Asunto(s)
ADN/metabolismo , Colorantes Fluorescentes , Simulación de Dinámica Molecular , Emparejamiento Base , Sitios de Unión , Indoles , Cinética , Sondas Moleculares , Factores de Tiempo
20.
J Chem Phys ; 132(14): 144701, 2010 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-20406004

RESUMEN

A solute-solvent interaction at the air/water interface was investigated both experimentally and theoretically, by studying a prototypical surface-active polarity indicator molecule, coumarin 110 (C110), adsorbed at the air/water interface with heterodyne-detected electronic sum frequency generation (HD-ESFG) spectroscopy, polarization second harmonic generation (SHG), and a molecular dynamics (MD) simulation. The second-order nonlinear optical susceptibility (chi((2))) tensor elements of C110 at the air/water interface were determined experimentally by HD-ESFG and polarization SHG, and information on "intermediate" polarity sensed by C110 at the interface was obtained by HD-ESFG. An MD simulation and a time-dependent density functional theory calculation were used to theoretically evaluate the chi((2)) tensor elements, which were in good agreement with the experimental results of HD-ESFG and polarization SHG. The microscopic "half-hydration" structure around C110 at the water surface was visualized on the basis of the MD simulation data, with which we can intuitively understand the microscopic origin of the surface activity of C110 and the intermediate polarity sensed by C110 at the air/water interface.


Asunto(s)
Cumarinas/química , Simulación de Dinámica Molecular , Análisis Espectral/métodos , Agua/química , Adsorción , Aire , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA