Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochim Biophys Acta ; 1843(11): 2394-402, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24978297

RESUMEN

Cardiomyocytes (CMs) derived from human pluripotent stem cells (hPSCs) offer immense value in studying cardiovascular regenerative medicine. However, intrinsic biases and differential responsiveness of hPSCs towards cardiac differentiation pose significant technical and logistic hurdles that hamper human cardiomyocyte studies. Tandem modulation of canonical and non-canonical Wnt signaling pathways may play a crucial role in cardiac development that can efficiently generate cardiomyocytes from pluripotent stem cells. Our Wnt signaling expression profiles revealed that phasic modulation of canonical/non-canonical axis enabled orderly recapitulation of cardiac developmental ontogeny. Moreover, evaluation of 8 hPSC lines showed marked commitment towards cardiac-mesoderm during the early phase of differentiation, with elevated levels of canonical Wnts (Wnt3 and 3a) and Mesp1. Whereas continued activation of canonical Wnts was counterproductive, its discrete inhibition during the later phase of cardiac differentiation was accompanied by significant up-regulation of non-canonical Wnt expression (Wnt5a and 11) and enhanced Nkx2.5(+) (up to 98%) populations. These Nkx2.5(+) populations transited to contracting cardiac troponin T-positive CMs with up to 80% efficiency. Our results suggest that timely modulation of Wnt pathways would transcend intrinsic differentiation biases of hPSCs to consistently generate functional CMs that could facilitate their scalable production for meaningful clinical translation towards personalized regenerative medicine.

2.
Cell Death Dis ; 10(5): 337, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-31000695

RESUMEN

Maternal influenza infection during pregnancy was reported multiple times as the possible cause of many defects and congenital anomalies. Apart from several cases of influenza-related miscarriage during various trimesters of pregnancy, some epidemiological data suggest a link between maternal influenza infection and genetic abnormalities in offspring. However, there are no reports yet describing how maternal influenza alters cellular pathways at early stages of development to result in congenital defects in the fetus. In the present study, using proteomic approaches, we utilized human-induced pluripotent stem cells (hiPSCs) for modeling intrablastocyst infection with influenza virus to not only investigate the vulnerability and responses of pluripotent stem cells to this virus but also to determine the possible impacts of influenza on pluripotency and signaling pathways controlling differentiation and embryogenesis. Our data indicated viral protein production in influenza A virus (IAV)-infected hiPSCs. However, viral replication was restricted in these cells, but cell viability and pluripotency were negatively affected. These events occurred simultaneously with an excessive level of IAV-induced autophagy as well as cytopathic effects. Quantitative SOMAscan screening also indicated that changes in the proteome of hiPSCs corresponded to abnormal differentiation in these cells. Taken together, our results showed that IAV-modulated reduction in hiPSC pluripotency is associated with significant activation of autophagy. Further investigations are required to explore the role of IAV-induced autophagy in leading pluripotent stem cells toward abnormal differentiation and impaired development in early stages of embryogenesis.


Asunto(s)
Autofagia , Células Madre Pluripotentes Inducidas/metabolismo , Virus de la Influenza A/fisiología , Células A549 , Autofagia/efectos de los fármacos , Diferenciación Celular , Desarrollo Embrionario , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/virología , Macrólidos/farmacología , Redes y Vías Metabólicas , Proteína Homeótica Nanog/metabolismo , Proteoma/análisis , Proteómica , Factores de Transcripción SOXB1/metabolismo , Sirolimus/farmacología , Replicación Viral
3.
PLoS One ; 9(7): e103485, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25068310

RESUMEN

Genetically unmodified cardiomyocytes mandated for cardiac regenerative therapy is conceivable by "foot-print free" reprogramming of somatic cells to induced pluripotent stem cells (iPSC). In this study, we report generation of foot-print free hiPSC through messenger RNA (mRNA) based reprograming. Subsequently, we characterize cardiomyocytes derived from these hiPSC using molecular and electrophysiological methods to characterize their applicability for regenerative medicine. Our results demonstrate that mRNA-iPSCs differentiate ontogenetically into cardiomyocytes with increased expression of early commitment markers of mesoderm, cardiac mesoderm, followed by cardiac specific transcriptional and sarcomeric structural and ion channel genes. Furthermore, these cardiomyocytes stained positively for sarcomeric and ion channel proteins. Based on multi-electrode array (MEA) recordings, these mRNA-hiPSC derived cardiomyocytes responded predictably to various pharmacologically active drugs that target adrenergic, sodium, calcium and potassium channels. The cardiomyocytes responded chronotropically to isoproterenol in a dose dependent manner, inotropic activity of nifidipine decreased spontaneous contractions. Moreover, Sotalol and E-4031 prolonged QT intervals, while TTX reduced sodium influx. Our results for the first time show a systemic evaluation based on molecular, structural and functional properties of cardiomyocytes differentiated from mRNA-iPSC. These results, coupled with feasibility of generating patient-specific iPSCs hold great promise for the development of large-scale generation of clinical grade cardiomyocytes for cardiac regenerative medicine.


Asunto(s)
Diferenciación Celular/genética , Técnicas de Reprogramación Celular/métodos , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , ARN Mensajero/genética , Carbacol/farmacología , Cardiotónicos/farmacología , Células Cultivadas , Reprogramación Celular/efectos de los fármacos , Reprogramación Celular/genética , Agonistas Colinérgicos/farmacología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/fisiología , Canales Iónicos/efectos de los fármacos , Canales Iónicos/fisiología , Isoproterenol/farmacología , Masculino , Potenciales de la Membrana/efectos de los fármacos , Microscopía Confocal , Persona de Mediana Edad , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Antígenos Embrionarios Específico de Estadio/genética , Antígenos Embrionarios Específico de Estadio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA