Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 110(20): 203202, 2013 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-25167405

RESUMEN

We perform a theoretical and experimental study of a system of two ultracold atoms with tunable interaction in an elongated trapping potential. We show that the coupling of center-of-mass and relative motion due to an anharmonicity of the trapping potential leads to a coherent coupling of a state of an unbound atom pair and a molecule with a center of mass excitation. By performing the experiment with exactly two particles we exclude three-body losses and can therefore directly observe coherent molecule formation. We find quantitative agreement between our theory of inelastic confinement-induced resonances and the experimental results. This shows that the effects of center-of-mass to relative-motion coupling can have a significant impact on the physics of quantum systems near center-of-mass to relative-motion coupling resonances.

2.
Phys Rev Lett ; 108(7): 075303, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22401221

RESUMEN

We study a system of two distinguishable fermions in a 1D harmonic potential. This system has the exceptional property that there is an analytic solution for arbitrary values of the interparticle interaction. We tune the interaction strength and compare the measured properties of the system to the theoretical prediction. For diverging interaction strength, the energy and square modulus of the wave function for two distinguishable particles are the same as for a system of two noninteracting identical fermions. This is referred to as fermionization. We have observed this phenomenon by directly comparing two distinguishable fermions with diverging interaction strength with two identical fermions in the same potential. We observe good agreement between experiment and theory. By adding more particles our system can be used as a quantum simulator for more complex systems where no theoretical solution is available.

3.
Phys Rev Lett ; 105(10): 103201, 2010 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-20867517

RESUMEN

Ultracold gases of three distinguishable particles with large scattering lengths are expected to show rich few-body physics related to the Efimov effect. We have created three different mixtures of ultracold 6Li atoms and weakly bound 6Li2 dimers consisting of atoms in three different hyperfine states and studied their inelastic decay via atom-dimer collisions. We have found resonant enhancement of the decay due to the crossing of Efimov-like trimer states with the atom-dimer continuum in one mixture as well as minima of the decay in another mixture, which we interpret as a suppression of exchange reactions of the type |12+|3→|23+|1. Such a suppression is caused by interference between different decay paths and demonstrates the possibility of using Efimov physics to control the rate constants for molecular exchange reactions in the ultracold regime.

4.
Science ; 332(6027): 336-8, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21493855

RESUMEN

Systems consisting of few interacting fermions are the building blocks of matter, with atoms and nuclei being the most prominent examples. We have created a few-body quantum system with complete control over its quantum state using ultracold fermionic atoms in an optical dipole trap. Ground-state systems consisting of 1 to 10 particles are prepared with fidelities of ∼90%. We can tune the interparticle interactions to arbitrary values using a Feshbach resonance and have observed the interaction-induced energy shift for a pair of repulsively interacting atoms. This work is expected to enable quantum simulation of strongly correlated few-body systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA