Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chem Soc Rev ; 53(11): 5781-5861, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38690681

RESUMEN

Ferroelectricity, which has diverse important applications such as memory elements, capacitors, and sensors, was first discovered in a molecular compound, Rochelle salt, in 1920 by Valasek. Owing to their superiorities of lightweight, biocompatibility, structural tunability, mechanical flexibility, etc., the past decade has witnessed the renaissance of molecular ferroelectrics as promising complementary materials to commercial inorganic ferroelectrics. Thus, on the 100th anniversary of ferroelectricity, it is an opportune time to look into the future, specifically into how to push the boundaries of material design in molecular ferroelectric systems and finally overcome the hurdles to their commercialization. Herein, we present a comprehensive and accessible review of the appealing development of molecular ferroelectrics over the past 10 years, with an emphasis on their structural diversity, chemical design, exceptional properties, and potential applications. We believe that it will inspire intense, combined research efforts to enrich the family of high-performance molecular ferroelectrics and attract widespread interest from physicists and chemists to better understand the structure-function relationships governing improved applied functional device engineering.

2.
J Am Chem Soc ; 144(30): 13806-13814, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35816081

RESUMEN

Ferroelectric domains and domain walls are unique characteristics of ferroelectric materials. Among them, charged domain walls (CDWs) are a special kind of peculiar microstructure that highly improve conductivity, piezoelectricity, and photovoltaic efficiency. Thus, CDWs are believed to be the key to ferroelectrics' future application in fields of energy, sensing, information storage, and so forth. Studies on CDWs are one of the most attractive directions in conventional inorganic ferroelectric ceramics. However, in newly emerged molecular ferroelectrics, which have advantages such as lightweight, easy preparation, simple film fabrication, mechanical flexibility, and biocompatibility, CDWs are rarely observed due to the lack of free charges. In inorganic ferroelectrics, doping is a traditional method to induce free charges, but for molecular ferroelectrics fabricated by solution processes, doping usually causes phase separation or phase transition, which destabilizes or removes ferroelectricity. To realize stable CDWs in molecular systems, we designed and synthesized an n-type molecular ferroelectric, 1-adamantanammonium hydroiodate. In this compound, negative charges are induced by defects in the I- vacancy, and CDWs can be achieved. Nanometer-scale CDWs that are stable at temperatures as high as 373 K can be "written" precisely by an electrically biased metal tip. More importantly, this is the first time that the charge diffusion of CDWs at variable temperatures has been investigated in molecular ferroelectrics. This work provides a new design strategy for n-type molecular ferroelectrics and may shed light on their future applications in flexible electronics, microsensors, and so forth.

3.
Angew Chem Int Ed Engl ; 58(26): 8857-8861, 2019 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-31050113

RESUMEN

The X-site ion in organic-inorganic hybrid ABX3 perovskites (OHPs) varies from halide ion to bridging linkers like HCOO- , N3 - , NO2 - , and CN- . However, no nitrite-based OHP ferroelectrics have been reported so far. Now, based on non-ferroelectric [(CH3 )4 N][Ni(NO2 )3 ], through the combined methodologies of quasi-spherical shape, hydrogen bonding functionality, and H/F substitution, we have successfully synthesized an OHP ferroelectric, [FMeTP][Ni(NO2 )3 ] (FMeTP=N-fluoromethyl tropine). As an unprecedented nitrite-based OHP ferroelectric, the well-designed [FMeTP][Ni(NO2 )3 ] undergoes the ferroelectric phase transition at 400 K with an Aizu notation of 6/mmmFm, showing multiaxial ferroelectric characteristics. This work is a great step towards not only enriching the molecular ferroelectric families but also accelerating the potential practical applications.

4.
Adv Mater ; 36(11): e2307518, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38041802

RESUMEN

On the path of persisting Moore's Law, one of the biggest obstacles is the "Boltzmann tyranny," which defines the lower limit of power consumption of individual transistors. Negative capacitance (NC) in ferroelectrics could provide a solution and has garnered significant attention in the fields of nanoelectronics, materials science, and solid-state physics. Molecular ferroelectrics, as an integral part of ferroelectrics, have developed rapidly in terms of both performance and functionality, with their inherent advantages such as easy fabrication, mechanical flexibility, low processing temperature, and structural tunability. However, studies on the NC in molecular ferroelectrics are limited. In this study, the focus is centered on the fabricated high-quality thin films of trimethylchloromethyl ammonium trichlorocadmium(II), and a pioneering investigation on their NC responses is conducted. The findings demonstrate that the NC exhibited by molecular ferroelectrics is comparable to that of conventional HfO2 -based ferroelectrics. This underscores the potential of molecular material systems for next-generation electronic devices.

5.
Adv Sci (Weinh) ; : e2400636, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778554

RESUMEN

Over the past years, the application potential of ferroelectric nanomaterials with unique physical properties for modern electronics is highlighted to a large extent. However, it is relatively challenging to fabricate inorganic ferroelectric nanomaterials, which is a process depending on a vacuum atmosphere at high temperatures. As significant complements to inorganic ferroelectric nanomaterials, the nanomaterials of molecular ferroelectrics are rarely reported. Here a low-cost room-temperature antisolvent method is used to synthesize free-standing 2D organic-inorganic hybrid perovskite (OIHP) ferroelectric nanosheets (NSs), that is, (CHA)2PbBr4 NSs (CHA = cyclohexylammonium), with an average lateral size of 357.59 nm and a thickness ranging from 10 to 70 nm. This method shows high repeatability and produces NSs with excellent crystallinity. Moreover, ferroelectric domains in single NSs can be clearly visualized and manipulated using piezoresponse force microscopy (PFM). The domain switching and PFM-switching spectroscopy indicate the robust in-plane ferroelectricity of the NSs. This work not only introduces a feasible, low-cost, and scalable method for preparing molecular ferroelectric NSs but also promotes the research on molecular ferroelectric nanomaterials.

6.
Nat Commun ; 15(1): 4470, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796520

RESUMEN

Molecular ferroelectrics are attracting great interest due to their light weight, mechanical flexibility, low cost, ease of processing and environmental friendliness. These advantages make molecular ferroelectrics viable alternatives or supplements to inorganic ceramics and polymer ferroelectrics. It is expected that molecular ferroelectrics with good performance can be fabricated, which in turns calls for effective chemical design strategies in crystal engineering. To achieve so, we propose a hydrogen bond modification method by introducing the hydroxyl group, and successfully boost the phase transition temperature (Tc) by at least 336 K. As a result, the molecular ferroelectric 1-hydroxy-3-adamantanammonium tetrafluoroborate [(HaaOH)BF4] can maintain ferroelectricity until 528 K, a Tc value much larger than that of BTO (390 K). Meanwhile, micro-domain patterns, in stable state for 2 years, can be directly written on the film of (HaaOH)BF4. In this respect, hydrogen bond modification is a feasible and effective strategy for designing molecular ferroelectrics with high Tc and stable ferroelectric domains. Such an organic molecule with varied modification sites and the precise crystal engineering can provide an efficient route to enrich high-Tc ferroelectrics with various physical properties.

7.
Adv Mater ; : e2401392, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38821489

RESUMEN

Anatomizing mixed-phases, referring to analyzing the mixing profiles and quantifying the phases' proportions in a material, which is of great significance in the genuine applications. Here, by using second-harmonic generation (SHG) polarimetry and piezoresponse force microscopy (PFM) techniques, this work elucidates the contributions and distributions of two different symmetric phases mixed in an archetype monoaxial molecular ferroelectric, diisopropylammonium chloride (DIPACl). The two competing phases are preferred in thermodynamics or kinetic process respectively, and this work evidences the switching behavior between the two competing phases facilitated by an external electrical field as opposed to a heating process. This research contributes novel insights into phase engineering in the field of molecular ferroelectrics and is poised to serve as a potent analytical tool for subsequent applications.

8.
ACS Nano ; 17(24): 25625-25637, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38096441

RESUMEN

Implantable neural stimulation devices are becoming prevalent in bioelectronic medicine for the precise treatment of various clinical diseases. Nevertheless, the limited lifespan and buckling size of the implanted devices remain significant obstacles for chronic clinical application. In this study, we developed an ultrasound-driven battery-free neurostimulator based on a high-performance mini-sized nanogenerator and demonstrated its successful application for the deep-brain-stimulation (DBS) therapy of Parkinson's disease in a rat model. This soft piezoelectric-triboelectric hybrid nanogenerators (PTNG) are made of porous thin-films of molecular piezoelectric materials, which have great advantages of facile, scalable, low-temperature, and flexible processing. Without any bucky accessory control circuits, the subcutaneously implanted soft PTNG can function as a wirelessly powered neurostimulator, allowing for the adjustment of stimulation parameters through external programmable ultrasound pulses. This DBS electroceutical application of energy-harvesting thin-film devices based on molecular piezoelectric materials provides valuable insight into the development of a soft high-performance bioelectronic device.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Animales , Ratas , Ultrasonografía , Suministros de Energía Eléctrica , Porosidad
9.
Adv Mater ; 35(19): e2211584, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36840984

RESUMEN

Achieving a periodic domain structure in ferroelectric materials to tailor the macroscopic properties or realize new functions has always been a hot topic. However, methods to construct periodic domain structures, such as epitaxial growth, direct writing by scanning tips, and the patterned electrode method, are difficult or inefficient to implement in emerging molecular ferroelectrics, which have the advantages of lightweight, flexibility, biocompatibility, etc. An efficient method for constructing and controlling periodic domain structures is urgently needed to facilitate the development of molecular ferroelectrics in nanoelectronic devices. In this work, it is demonstrated that large-area, periodic and controllable needle-like domain structures can be achieved in thin films of the molecular ferroelectric trimethylchloromethyl ammonium trichlorocadmium (TMCM-CdCl3 ) upon the application of tensile strain. The domain evolution under various tensile strains can be clearly observed, and such processes are accordingly identified. Furthermore, the domain wall exhibits a superior piezoelectric response, with up to fivefold enhancement compared to that of the pristine samples. Such large-area tunable periodic domain structure and abnormally strong piezoresponse are not only of great interests in fundamental studies, but also highly important in the future applications in functional molecular materials.

10.
Small Methods ; 6(9): e2200421, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35790109

RESUMEN

The hybrid rare-earth double perovskite (HREDP) system provides great convenience for the construction of multifunctional materials. However, suffering from the high symmetry of their intrinsic structure, HREDPs face the challenges in the realization and optimization of ferroelectric and piezoelectric properties. For the first time, after a systematic investigation of the chirality transformation principle, it is found that the introduction of chirality is an efficient strategy for the targeted construction of multifunctionality, which simultaneously increases the possibility of obtaining multiaxial ferroelectricity and ferroelasticity, and effectively realizes a large piezoelectric response. Moreover, chirality induced ferroelasticity will also achieve excellent magnetic or optical response driven by pressure-sensitive. To verify the feasibility of the above ideas, by using rare-earth ions (Ce3+ ) and suitable chiral organic cations, a new HREDP, (R-N-methyl-3-hydroxylquinuclidinium)2 RbCe(NO3 )6 (R1) is successfully designed, in which ferroelasticity, multiaxial ferroelectricity, satisfactory piezoelectric response, and the pressure-driven single-ion magnetics switch are simultaneously achieved for the first time. This work shows that the induction of chirality and the HREDP system provide an effective strategy and ideal platform for the expansion and optimization of the functions in perovskite ferroelectrics.

11.
Adv Mater ; 31(30): e1901843, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31169938

RESUMEN

Hybrid perovskite materials are famous for their great application potential in photovoltaics and optoelectronics. Among them, lead-iodide-based perovskites receive great attention because of their good optical absorption ability and excellent electrical transport properties. Although many believe the ferroelectric photovoltaic effect (FEPV) plays a crucial role for the high conversion efficiency, the ferroelectricity in CH3 NH3 PbI3 is still under debate, and obtaining ferroelectric lead iodide perovskites is still challenging. In order to avoid the randomness and blindness in the conventional method of searching for perovskite ferroelectrics, a design strategy of fluorine modification is developed. As a demonstration, a nonpolar lead iodide perovskite is modified and a new 2D fluorinated layered hybrid perovskite material of (4,4-difluorocyclohexylammonium)2 PbI4 , 1, is obtained, which possesses clear ferroelectricity with controllable spontaneous polarization. The direct bandgap of 2.38 eV with strong photoluminescence also guarantees the direct observation of polarization-induced FEPV. More importantly, the 2D structure and fluorination are also expected to achieve both good stability and charge transport properties. 1 is not only a 2D fluorinated lead iodide perovskite with confirmed ferroelectricity, but also a great platform for studying the effect of ferroelectricity and FEPV in the context of lead halide perovskite solar cells and other optoelectronic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA