Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Alzheimers Dement ; 20(4): 2906-2921, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38460116

RESUMEN

INTRODUCTION: Although dementia-related proteinopathy has a strong negative impact on public health, and is highly heritable, understanding of the related genetic architecture is incomplete. METHODS: We applied multidimensional generalized partial credit modeling (GPCM) to test genetic associations with dementia-related proteinopathies. Data were analyzed to identify candidate single nucleotide variants for the following proteinopathies: Aß, tau, α-synuclein, and TDP-43. RESULTS: Final included data comprised 966 participants with neuropathologic and WGS data. Three continuous latent outcomes were constructed, corresponding to TDP-43-, Aß/Tau-, and α-synuclein-related neuropathology endophenotype scores. This approach helped validate known genotype/phenotype associations: for example, TMEM106B and GRN were risk alleles for TDP-43 pathology; and GBA for α-synuclein/Lewy bodies. Novel suggestive proteinopathy-linked alleles were also discovered, including several (SDHAF1, TMEM68, and ARHGEF28) with colocalization analyses and/or high degrees of biologic credibility. DISCUSSION: A novel methodology using GPCM enabled insights into gene candidates for driving misfolded proteinopathies. HIGHLIGHTS: Latent factor scores for proteinopathies were estimated using a generalized partial credit model. The three latent continuous scores corresponded well with proteinopathy severity. Novel genes associated with proteinopathies were identified. Several genes had high degrees of biologic credibility for dementia risk factors.


Asunto(s)
Enfermedad de Alzheimer , Productos Biológicos , Demencia , Deficiencias en la Proteostasis , Proteinopatías TDP-43 , Humanos , alfa-Sinucleína/genética , Proteinopatías TDP-43/genética , Proteinopatías TDP-43/patología , Demencia/genética , Proteínas de Unión al ADN , Enfermedad de Alzheimer/patología , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética
2.
Acta Neuropathol ; 141(1): 1-24, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33098484

RESUMEN

Brain arteriolosclerosis (B-ASC), characterized by pathologic arteriolar wall thickening, is a common finding at autopsy in aged persons and is associated with cognitive impairment. Hypertension and diabetes are widely recognized as risk factors for B-ASC. Recent research indicates other and more complex risk factors and pathogenetic mechanisms. Here, we describe aspects of the unique architecture of brain arterioles, histomorphologic features of B-ASC, relevant neuroimaging findings, epidemiology and association with aging, established genetic risk factors, and the co-occurrence of B-ASC with other neuropathologic conditions such as Alzheimer's disease and limbic-predominant age-related TDP-43 encephalopathy (LATE). There may also be complex physiologic interactions between metabolic syndrome (e.g., hypertension and inflammation) and brain arteriolar pathology. Although there is no universally applied diagnostic methodology, several classification schemes and neuroimaging techniques are used to diagnose and categorize cerebral small vessel disease pathologies that include B-ASC, microinfarcts, microbleeds, lacunar infarcts, and cerebral amyloid angiopathy (CAA). In clinical-pathologic studies that factored in comorbid diseases, B-ASC was independently associated with impairments of global cognition, episodic memory, working memory, and perceptual speed, and has been linked to autonomic dysfunction and motor symptoms including parkinsonism. We conclude by discussing critical knowledge gaps related to B-ASC and suggest that there are probably subcategories of B-ASC that differ in pathogenesis. Observed in over 80% of autopsied individuals beyond 80 years of age, B-ASC is a complex and under-studied contributor to neurologic disability.


Asunto(s)
Encéfalo/patología , Arteriosclerosis Intracraneal/patología , Anciano , Anciano de 80 o más Años , Animales , Arteriolas/patología , Angiopatía Amiloide Cerebral , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/patología , Trastornos del Conocimiento/psicología , Humanos , Arteriosclerosis Intracraneal/psicología , Neuroimagen
3.
Nat Genet ; 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39379761

RESUMEN

Genome-wide association studies (GWAS) have identified >80 Alzheimer's disease and related dementias (ADRD)-associated genetic loci. However, the clinical outcomes used in most previous studies belie the complex nature of underlying neuropathologies. Here we performed GWAS on 11 ADRD-related neuropathology endophenotypes with participants drawn from the following three sources: the National Alzheimer's Coordinating Center, the Religious Orders Study and Rush Memory and Aging Project, and the Adult Changes in Thought study (n = 7,804 total autopsied participants). We identified eight independent significantly associated loci, of which four were new (COL4A1, PIK3R5, LZTS1 and APOC2). Separately testing known ADRD loci, 19 loci were significantly associated with at least one neuropathology after false-discovery rate adjustment. Genetic colocalization analyses identified pleiotropic effects and quantitative trait loci. Methylation in the cerebral cortex at two sites near APOC2 was associated with cerebral amyloid angiopathy. Studies that include neuropathology endophenotypes are an important step in understanding the mechanisms underlying genetic ADRD risk.

4.
J Neuropathol Exp Neurol ; 82(9): 760-768, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37528055

RESUMEN

Limbic-predominant age-related TDP-43 encephalopathy (LATE) affects approximately one-third of older individuals and is associated with cognitive impairment. However, there is a highly incomplete understanding of the genetic determinants of LATE neuropathologic changes (LATE-NC) in diverse populations. The defining neuropathologic feature of LATE-NC is TDP-43 proteinopathy, often with comorbid hippocampal sclerosis (HS). In terms of genetic risk factors, LATE-NC and/or HS are associated with single nucleotide variants (SNVs) in 3 genes-TMEM106B (rs1990622), GRN (rs5848), and ABCC9 (rs1914361 and rs701478). We evaluated these 3 genes in convenience samples of individuals of African ancestry. The allele frequencies of the LATE-associated alleles were significantly different between persons of primarily African (versus European) ancestry: In persons of African ancestry, the risk-associated alleles for TMEM106B and ABCC9 were less frequent, whereas the risk allele in GRN was more frequent. We performed an exploratory analysis of data from African-American subjects processed by the Alzheimer's Disease Genomics Consortium, with a subset of African-American participants (n = 166) having corroborating neuropathologic data through the National Alzheimer's Coordinating Center (NACC). In this limited-size sample, the ABCC9/rs1914361 SNV was associated with HS pathology. More work is required concerning the genetic factors influencing non-Alzheimer disease pathology such as LATE-NC in diverse cohorts.


Asunto(s)
Enfermedad de Alzheimer , Proteinopatías TDP-43 , Humanos , Alelos , Envejecimiento/patología , Polimorfismo de Nucleótido Simple/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Proteinopatías TDP-43/patología , Progranulinas/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Receptores de Sulfonilureas/genética
5.
Neurobiol Aging ; 111: 95-106, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34852950

RESUMEN

The genetic locus containing the WWOX and MAF genes was implicated as a clinical Alzheimer's disease (AD) risk locus in two recent large meta-analytic genome wide association studies (GWAS). In a prior GWAS, we identified a variant in WWOX as a suggestive risk allele for hippocampal sclerosis. We hypothesized that the WWOX/MAF locus may be preferentially associated with non-plaque- and non-tau-related neuropathological changes (NC). Data from research participants with GWAS and autopsy measures from the National Alzheimer's Coordinating Center and the Religious Orders Study and the Rush Memory and Aging Project were meta-analyzed. Notably, no variants in the locus were significantly associated with ADNC. However, several WWOX/MAF variants had significant adjusted associations with limbic-predominant age-related TDP-43 encephalopathy NC (LATE-NC), HS, and brain arteriolosclerosis. These associations remained largely unchanged after adjustment for ADNC (operationalized with standard semiquantitative staging), suggesting that these associations are independent of ADNC. Thus, WWOX genetic variants were associated pathologically with LATE-NC, not ADNC.


Asunto(s)
Enfermedad de Alzheimer/genética , Demencia/genética , Variación Genética/genética , Estudio de Asociación del Genoma Completo/métodos , Fenotipo , Proteínas Proto-Oncogénicas c-maf/genética , Proteinopatías TDP-43/genética , Proteínas Supresoras de Tumor/genética , Oxidorreductasa que Contiene Dominios WW/genética , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino
6.
Acta Neuropathol Commun ; 9(1): 152, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34526147

RESUMEN

Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is the most prevalent subtype of TDP-43 proteinopathy, affecting up to 1/3rd of aged persons. LATE-NC often co-occurs with hippocampal sclerosis (HS) pathology. It is currently unknown why some individuals with LATE-NC develop HS while others do not, but genetics may play a role. Previous studies found associations between LATE-NC phenotypes and specific genes: TMEM106B, GRN, ABCC9, KCNMB2, and APOE. Data from research participants with genomic and autopsy measures from the National Alzheimer's Coordinating Center (NACC; n = 631 subjects included) and the Religious Orders Study and Memory and the Rush Aging Project (ROSMAP; n = 780 included) were analyzed in the current study. Our goals were to reevaluate disease-associated genetic variants using newly collected data and to query whether the specific genotype/phenotype associations could provide new insights into disease-driving pathways. Research subjects included in prior LATE/HS genome-wide association studies (GWAS) were excluded. Single nucleotide variants (SNVs) within 10 kb of TMEM106B, GRN, ABCC9, KCNMB2, and APOE were tested for association with HS and LATE-NC, and separately for Alzheimer's pathologies, i.e. amyloid plaques and neurofibrillary tangles. Significantly associated SNVs were identified. When results were meta-analyzed, TMEM106B, GRN, and APOE had significant gene-based associations with both LATE and HS, whereas ABCC9 had significant associations with HS only. In a sensitivity analysis limited to LATE-NC + cases, ABCC9 variants were again associated with HS. By contrast, the associations of TMEM106B, GRN, and APOE with HS were attenuated when adjusting for TDP-43 proteinopathy, indicating that these genes may be associated primarily with TDP-43 proteinopathy. None of these genes except APOE appeared to be associated with Alzheimer's-type pathology. In summary, using data not included in prior studies of LATE or HS genomics, we replicated several previously reported gene-based associations and found novel evidence that specific risk alleles can differentially affect LATE-NC and HS.


Asunto(s)
Apolipoproteínas E/genética , Hipocampo/patología , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Progranulinas/genética , Receptores de Sulfonilureas/genética , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Predisposición Genética a la Enfermedad/epidemiología , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Masculino , Estudios Retrospectivos , Esclerosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA