Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioinform Adv ; 4(1): vbae023, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38456125

RESUMEN

Summary: Molecular mechanisms of biological functions and disease processes are exceptionally complex, and our ability to interrogate and understand relationships is becoming increasingly dependent on the use of computational modeling. We have developed "BioModME," a standalone R-based web application package, providing an intuitive and comprehensive graphical user interface to help investigators build, solve, visualize, and analyze computational models of complex biological systems. Some important features of the application package include multi-region system modeling, custom reaction rate laws and equations, unit conversion, model parameter estimation utilizing experimental data, and import and export of model information in the Systems Biology Matkup Language format. The users can also export models to MATLAB, R, and Python languages and the equations to LaTeX and Mathematical Markup Language formats. Other important features include an online model development platform, multi-modality visualization tool, and efficient numerical solvers for differential-algebraic equations and optimization. Availability and implementation: All relevant software information including documentation and tutorials can be found at https://mcw.marquette.edu/biomedical-engineering/computational-systems-biology-lab/biomodme.php. Deployed software can be accessed at https://biomodme.ctsi.mcw.edu/. Source code is freely available for download at https://github.com/MCWComputationalBiologyLab/BioModME.

2.
Front Mol Med ; 4: 1310002, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086435

RESUMEN

Since the FDA's approval of chimeric antigen receptor (CAR) T cells in 2017, significant improvements have been made in the design of chimeric antigen receptor constructs and in the manufacturing of CAR T cell therapies resulting in increased in vivo CAR T cell persistence and improved clinical outcome in certain hematological malignancies. Despite the remarkable clinical response seen in some patients, challenges remain in achieving durable long-term tumor-free survival, reducing therapy associated malignancies and toxicities, and expanding on the types of cancers that can be treated with this therapeutic modality. Careful analysis of the biological factors demarcating efficacious from suboptimal CAR T cell responses will be of paramount importance to address these shortcomings. With the ever-expanding toolbox of experimental approaches, single-cell technologies, and computational resources, there is renowned interest in discovering new ways to streamline the development and validation of new CAR T cell products. Better and more accurate prognostic and predictive models can be developed to help guide and inform clinical decision making by incorporating these approaches into translational and clinical workflows. In this review, we provide a brief overview of recent advancements in CAR T cell manufacturing and describe the strategies used to selectively expand specific phenotypic subsets. Additionally, we review experimental approaches to assess CAR T cell functionality and summarize current in silico methods which have the potential to improve CAR T cell manufacturing and predict clinical outcomes.

3.
ArXiv ; 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36798455

RESUMEN

Immunotherapies have been proven to have significant therapeutic efficacy in the treatment of cancer. The last decade has seen adoptive cell therapies, such as chimeric antigen receptor T-cell (CART-cell) therapy, gain FDA approval against specific cancers. Additionally, there are numerous clinical trials ongoing investigating additional designs and targets. Nevertheless, despite the excitement and promising potential of CART-cell therapy, response rates to therapy vary greatly between studies, patients, and cancers. There remains an unmet need to develop computational frameworks that more accurately predict CART-cell function and clinical efficacy. Here we present a coarse-grained model simulated with logical rules that demonstrates the evolution of signaling signatures following the interaction between CART-cells and tumor cells and allows for in silico based prediction of CART-cell functionality prior to experimentation.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38083755

RESUMEN

Immunotherapies have been proven to have significant therapeutic efficacy in the treatment of cancer. The last decade has seen adoptive cell therapies, such as chimeric antigen receptor T-cell (CART-cell) therapy, gain FDA approval against specific cancers. Additionally, there are numerous clinical trials ongoing investigating additional designs and targets. Nevertheless, despite the excitement and promising potential of CART-cell therapy, response rates to therapy vary greatly between studies, patients, and cancers. There remains an unmet need to develop computational frameworks that more accurately predict CART-cell function and clinical efficacy. Here we present a coarse-grained model simulated with logical rules that demonstrates the evolution of signaling signatures following the interaction between CART-cells and tumor cells and allows for in silico based prediction of CART-cell functionality prior to experimentation.Clinical Relevance- Analysis of CART-cell signaling signatures can inform future CAR receptor design and combination therapy approaches aimed at improving therapy response.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia Adoptiva , Linfocitos T , Neoplasias/terapia , Transducción de Señal , Comunicación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA