Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 117(4): 1206-1222, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38038953

RESUMEN

MicroRNA (miRNA) target mimicry technologies, utilizing naturally occurring miRNA decoy molecules, represent a potent tool for analyzing miRNA function. In this study, we present a highly efficient small RNA (sRNA) target mimicry design based on G-U base-paired hairpin RNA (hpG:U), which allows for the simultaneous targeting of multiple sRNAs. The hpG:U constructs consistently generate high amounts of intact, polyadenylated stem-loop (SL) RNA outside the nuclei, in contrast to traditional hairpin RNA designs with canonical base pairing (hpWT), which were predominantly processed resulting in a loop. By incorporating a 460-bp G-U base-paired double-stranded stem and a 312-576 nt loop carrying multiple miRNA target mimicry sites (GUMIC), the hpG:U construct displayed effective repression of three Arabidopsis miRNAs, namely miR165/166, miR157, and miR160, both individually and in combination. Additionally, a GUMIC construct targeting a prominent cluster of siRNAs derived from cucumber mosaic virus (CMV) Y-satellite RNA (Y-Sat) effectively inhibited Y-Sat siRNA-directed silencing of the chlorophyll biosynthetic gene CHLI, thereby reducing the yellowing symptoms in infected Nicotiana plants. Therefore, the G-U base-paired hpRNA, characterized by differential processing compared to traditional hpRNA, acts as an efficient decoy for both miRNAs and siRNAs. This technology holds great potential for sRNA functional analysis and the management of sRNA-mediated diseases.


Asunto(s)
Arabidopsis , MicroARNs , Emparejamiento Base/genética , Plantas Modificadas Genéticamente/genética , ARN Interferente Pequeño/genética , MicroARNs/genética , Interferencia de ARN , ARN Mensajero/genética , ARN Bicatenario , Arabidopsis/genética
2.
Plant Cell ; 34(6): 2343-2363, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35262740

RESUMEN

Mitochondrial function depends on the RNA processing of mitochondrial gene transcripts by nucleus-encoded proteins. This posttranscriptional processing involves the large group of nuclear-encoded pentatricopeptide repeat (PPR) proteins. Mitochondrial processes represent a crucial part in animal immunity, but whether mitochondria play similar roles in plants remains unclear. Here, we report the identification of RESISTANCE TO PHYTOPHTHORA PARASITICA 7 (AtRTP7), a P-type PPR protein, in Arabidopsis thaliana and its conserved function in immunity to diverse pathogens across distantly related plant species. RTP7 affects the levels of mitochondrial reactive oxygen species (mROS) by participating in RNA splicing of nad7, which encodes a critical subunit of the mitochondrial respiratory chain Complex I, the largest of the four major components of the mitochondrial oxidative phosphorylation system. The enhanced resistance of rtp7 plants to Phytophthora parasitica is dependent on an elevated mROS burst, but might be independent from the ROS burst associated with plasma membrane-localized NADPH oxidases. Our study reveals the immune function of RTP7 and the defective processing of Complex I subunits in rtp7 plants resulted in enhanced resistance to both biotrophic and necrotrophic pathogens without affecting overall plant development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Inmunidad de la Planta/genética , Procesamiento Postranscripcional del ARN , Empalme del ARN , ARN Mitocondrial/metabolismo , Estallido Respiratorio
3.
Cell ; 142(2): 284-95, 2010 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-20655469

RESUMEN

Pathogens of plants and animals produce effector proteins that are transferred into the cytoplasm of host cells to suppress host defenses. One type of plant pathogens, oomycetes, produces effector proteins with N-terminal RXLR and dEER motifs that enable entry into host cells. We show here that effectors of another pathogen type, fungi, contain functional variants of the RXLR motif, and that the oomycete and fungal RXLR motifs enable binding to the phospholipid, phosphatidylinositol-3-phosphate (PI3P). We find that PI3P is abundant on the outer surface of plant cell plasma membranes and, furthermore, on some animal cells. All effectors could also enter human cells, suggesting that PI3P-mediated effector entry may be very widespread in plant, animal and human pathogenesis. Entry into both plant and animal cells involves lipid raft-mediated endocytosis. Blocking PI3P binding inhibited effector entry, suggesting new therapeutic avenues.


Asunto(s)
Interacciones Huésped-Patógeno , Oomicetos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Algáceas/química , Proteínas Algáceas/metabolismo , Secuencia de Aminoácidos , Animales , Membrana Celular/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Humanos , Microdominios de Membrana/metabolismo , Datos de Secuencia Molecular , Plantas/microbiología
4.
New Phytol ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877698

RESUMEN

Phytophthora parasitica causes diseases on a broad range of host plants. It secretes numerous effectors to suppress plant immunity. However, only a few virulence effectors in P. parasitica have been characterized. Here, we highlight that PpE18, a conserved RXLR effector in P. parasitica, was a virulence factor and suppresses Nicotiana benthamiana immunity. Utilizing luciferase complementation, co-immunoprecipitation, and GST pull-down assays, we determined that PpE18 targeted NbAPX3-1, a peroxisome membrane-associated ascorbate peroxidase with reactive oxygen species (ROS)-scavenging activity and positively regulates plant immunity in N. benthamiana. We show that the ROS-scavenging activity of NbAPX3-1 was critical for its immune function and was hindered by the binding of PpE18. The interaction between PpE18 and NbAPX3-1 resulted in an elevation of ROS levels in the peroxisome. Moreover, we discovered that the ankyrin repeat-containing protein NbANKr2 acted as a positive immune regulator, interacting with both NbAPX3-1 and PpE18. NbANKr2 was required for NbAPX3-1-mediated disease resistance. PpE18 competitively interfered with the interaction between NbAPX3-1 and NbANKr2, thereby weakening plant resistance. Our results reveal an effective counter-defense mechanism by which P. parasitica employed effector PpE18 to suppress host cellular defense, by suppressing biochemical activity and disturbing immune function of NbAPX3-1 during infection.

5.
Plant J ; 111(2): 360-373, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35506331

RESUMEN

Oomycetes are diploid eukaryotic microorganisms that seriously threaten sustainable crop production. MicroRNAs (miRNAs) and corresponding natural antisense transcripts (NATs) are important regulators of multiple biological processes. However, little is known about their roles in plant immunity against oomycete pathogens. In this study, we report the identification and functional characterization of miR398b and its cis-NAT, the core-2/I-branching beta-1,6-N-acetylglucosaminyltransferase gene (AtC2GnT), in plant immunity. Gain- and loss-of-function assays revealed that miR398b mediates Arabidopsis thaliana susceptibility to Phytophthora parasitica by targeting Cu/Zn-Superoxidase Dismutase1 (CSD1) and CSD2, leading to suppressed expression of CSD1 and CSD2 and decreased plant disease resistance. We further showed that AtC2GnT transcripts could inhibit the miR398b-CSDs module via inhibition of pri-miR398b expression, leading to elevated plant resistance to P. parasitica. Furthermore, quantitative reverse transcription PCR, RNA ligase-mediated 5'-amplification of cDNA ends (RLM-5' RACE), and transient expression assays indicated that miR398b suppresses the expression of AtC2GnT. We generated AtC2GnT-silenced A. thaliana plants by CRISPR/Cas9 or RNA interference methods, and the Nicotiana benthamiana NbC2GnT-silenced plants by virus-induced gene silencing. Pathogenicity assays showed that the C2GnT-silenced plants were more susceptible, while AtC2GnT-overexpressing plants exhibited elevated resistance to P. parasitica. AtC2GnT encodes a Golgi-localized protein, and transient expression of AtC2GnT enhanced N. benthamiana resistance to Phytophthora pathogens. Taken together, our results revealed a positive role of AtC2GnT and a negative regulatory loop formed by miR398b and AtC2GnT in regulating plant resistance to P. parasitica.


Asunto(s)
Arabidopsis , Phytophthora , Arabidopsis/genética , Arabidopsis/metabolismo , Resistencia a la Enfermedad/genética , Retroalimentación , Regulación de la Expresión Génica de las Plantas , Phytophthora/fisiología , Enfermedades de las Plantas/genética
6.
Plant Biotechnol J ; 21(3): 646-661, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36519513

RESUMEN

Phytophthora infestans causes severe losses in potato production. The MAPK kinase StMKK1 was previously found to negatively regulate potato immunity to P. infestans. Our results showed that StMKK1 interacts with a protein tyrosine phosphatase, referred to as StPTP1a, and StMKK1 directly phosphorylates StPTP1a at residues Ser-99, Tyr-223 and Thr-290. StPTP1a is a functional phosphatase and the phosphorylation of StPTP1a at these three residues enhances its stability and catalytic activity. StPTP1a negatively regulates potato immunity and represses SA-related gene expression. Furthermore, StPTP1a interacts with, and dephosphorylates, the StMKK1 downstream signalling targets StMPK4 and -7 at their Tyr-203 residue resulting in the repression of salicylic acid (SA)-related immunity. Silencing of NbPTP1a + NbMPK4 or NbPTP1a + NbMPK7 abolished the plant immunity to P. infestans caused by NbPTP1a silencing, indicating that PTP1a functions upstream of NbMPK4 and NbMPK7. StMKK1 requires StPTP1a to negatively regulate SA-related immunity and StPTP1a is phosphorylated and stabilized during immune activation to promote the de-phosphorylation of StMPK4 and -7. Our results reveal that potato StMKK1 activates and stabilizes the tyrosine phosphatase StPTP1a that in its turn de-phosphorylates StMPK4 and -7, thereby repressing plant SA-related immunity.


Asunto(s)
Phytophthora infestans , Solanum tuberosum , Solanum tuberosum/genética , Proteínas de Plantas/genética , Inmunidad de la Planta , Phytophthora infestans/fisiología , Proteínas Tirosina Fosfatasas/metabolismo , Enfermedades de las Plantas/genética
7.
New Phytol ; 238(2): 781-797, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36653957

RESUMEN

Ubiquitin-like domain-containing proteins (UDPs) are involved in the ubiquitin-proteasome system because of their ability to interact with the 26S proteasome. Here, we identified potato StUDP as a target of the Phytophthora infestans RXLR effector Pi06432 (PITG_06432), which supresses the salicylic acid (SA)-related immune pathway. By overexpressing and silencing of StUDP in potato, we show that StUDP negatively regulates plant immunity against P. infestans. StUDP interacts with, and destabilizes, the 26S proteasome subunit that is referred to as REGULATORY PARTICLE TRIPLE-A ATP-ASE (RPT) subunit StRPT3b. This destabilization represses the proteasome activity. Proteomic analysis and Western blotting show that StUDP decreases the stability of the master transcription factor SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1) in SA biosynthesis. StUDP negatively regulates the SA signalling pathway by repressing the proteasome activity and destabilizing StSARD1, leading to a decreased expression of the SARD1-targeted gene ISOCHORISMATE SYNTHASE 1 and thereby a decrease in SA content. Pi06432 stabilizes StUDP, and it depends on StUDP to destabilize StRPT3b and thereby supress the proteasome activity. Our study reveals that the P. infestans effector Pi06432 targets StUDP to hamper the homeostasis of the proteasome by the degradation of the proteasome subunit StRPT3b and thereby suppresses SA-related immunity.


Asunto(s)
Phytophthora infestans , Solanum tuberosum , Phytophthora infestans/metabolismo , Ubiquitinas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteómica , Inmunidad de la Planta , Enfermedades de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Plant Dis ; 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37884481

RESUMEN

Phytophthora parasitica is a highly destructive oomycete plant pathogen that is capable of infecting a wide range of hosts including many agricultural cash crops, fruit trees, and ornamental garden plants. One of the most important diseases caused by P. parasitica worldwide is black shank of tobacco. Rapid, sensitive, and specific pathogen detection is crucial for early rapid diagnosis which can facilitate effective disease management. In this study, we used a genomics approach to identify repeated sequences in the genome of P. parasitica by genome sequence alignment, and identified a 203 bp P. parasitica-specific sequence, PpM34, that is present in 31-60 copies in the genome. The P. parasitica genome-specificity of PpM34 was supported by PCR amplification of 24 genetically diverse strains of P. parasitica, 32 strains representing twelve other Phytophthora species, one Pythium specie, six fungal species and three bacterial species, all of which are plant pathogens. Our PCR and real-time PCR assays showed that the PpM34 sequence was highly sensitive in specifically detecting P. parasitica. Finally, we developed a PpM34-based high-efficiency Recombinase Polymerase Amplification (RPA) assay, which allowed us to specifically detect as little as 1 pg of P. parasitica total DNA from both pure cultures and infected Nicotiana benthamiana at 39°C using a fluorometric thermal cycler. The sensitivity, specificity, convenience and rapidity of this assay represents a major improvement for early diagnosis of P. parasitica infection.

9.
Plant Physiol ; 186(2): 1269-1287, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33720348

RESUMEN

The unfolded protein response (UPR) is a conserved stress adaptive signaling pathway in eukaryotic organisms activated by the accumulation of misfolded proteins in the endoplasmic reticulum (ER). UPR can be elicited in the course of plant defense, playing important roles in plant-microbe interactions. The major signaling pathways of plant UPR rely on the transcriptional activity of activated forms of ER membrane-associated stress sensors bZIP60 and bZIP28, which are transcription factors that modulate expression of UPR genes. In this study, we report the plant susceptibility factor Resistance to Phytophthora parasitica 1 (RTP1) is involved in ER stress sensing and rtp1-mediated resistance against P. parasitica is synergistically regulated with UPR, as demonstrated by the simultaneous strong induction of UPR and ER stress-associated immune genes in Arabidopsis thaliana rtp1 mutant plants during the infection by P. parasitica. We further demonstrate RTP1 contributes to stabilization of the ER membrane-associated bZIP60 and bZIP28 through manipulating the bifunctional protein kinase/ribonuclease IRE1-mediated bZIP60 splicing activity and interacting with bZIP28. Consequently, we find rtp1bzip60 and rtp1bzip28 mutant plants exhibit compromised resistance accompanied with attenuated induction of ER stress-responsive immune genes and reduction of callose deposition in response to P. parasitica infection. Taken together, we demonstrate RTP1 may exert negative modulating roles in the activation of key UPR regulators bZIP60 and bZIP28, which are required for rtp1-mediated plant resistance to P. parasitica. This facilitates our understanding of the important roles of stress adaptive UPR and ER stress in plant immunity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas de la Membrana/metabolismo , Phytophthora/fisiología , Enfermedades de las Plantas/inmunología , Transducción de Señal , Arabidopsis/inmunología , Arabidopsis/parasitología , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Proteínas de la Membrana/genética , Enfermedades de las Plantas/parasitología , Inmunidad de la Planta , Respuesta de Proteína Desplegada
10.
New Phytol ; 229(1): 501-515, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32772378

RESUMEN

Pathogens secret a plethora of effectors into the host cell to modulate plant immunity. Analysing the role of effectors in altering the function of their host target proteins will reveal critical components of the plant immune system. Here we show that Phytophthora infestans RXLR effector PITG20303, a virulent variant of AVRblb2 (PITG20300) that escapes recognition by the resistance protein Rpi-blb2, suppresses PAMP-triggered immunity (PTI) and promotes pathogen colonization by targeting and stabilizing a potato MAPK cascade protein, StMKK1. Both PITG20300 and PITG20303 target StMKK1, as confirmed by multiple in vivo and in vitro assays, and StMKK1 was shown to be a negative regulator of plant immunity, as determined by overexpression and gene silencing. StMKK1 is a negative regulator of plant PTI, and the kinase activities of StMKK1 are required for its suppression of PTI and effector interaction. PITG20303 depends partially on MKK1, PITG20300 does not depend on MKK1 for suppression of PTI-induced reactive oxygen species burst, while the full virulence activities of nuclear targeted PITG20303 and PITG20300 are dependent on MKK1. Our results show that PITG20303 and PITG20300 target and stabilize the plant MAPK cascade signalling protein StMKK1 to negatively regulate plant PTI response.


Asunto(s)
Phytophthora infestans , Solanum tuberosum , Moléculas de Patrón Molecular Asociado a Patógenos , Enfermedades de las Plantas , Inmunidad de la Planta , Proteínas de Plantas/genética
11.
Plant Physiol ; 184(4): 2182-2198, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32972981

RESUMEN

Mitochondria and chloroplasts play key roles in plant-pathogen interactions. Cytidine-to-uridine (C-to-U) RNA editing is a critical posttranscriptional modification in mitochondria and chloroplasts that is specific to flowering plants. Multiple organellar RNA-editing factors (MORFs) form a protein family that participates in C-to-U RNA editing, but little is known regarding their immune functions. Here, we report the identification of NbMORF8, a negative regulator of plant immunity to Phytophthora pathogens. Using virus-induced gene silencing and transient expression in Nicotiana benthamiana, we show that NbMORF8 functions through the regulation of reactive oxygen species production, salicylic acid signaling, and accumulation of multiple Arg-X-Leu-Arg effectors of Phytophthora pathogens. NbMORF8 is localized to mitochondria and chloroplasts, and its immune function requires mitochondrial targeting. The conserved MORF box domain is not required for its immune function. Furthermore, we show that the preferentially mitochondrion-localized NbMORF proteins negatively regulate plant resistance against Phytophthora, whereas the preferentially chloroplast-localized ones are positive immune regulators. Our study reveals that the C-to-U RNA-editing factor NbMORF8 negatively regulates plant immunity to the oomycete pathogen Phytophthora and that mitochondrion- and chloroplast-localized NbMORF family members exert opposing effects on immune regulation.


Asunto(s)
Citidina/genética , Citidina/metabolismo , Interacciones Huésped-Patógeno/genética , Nicotiana/genética , Phytophthora/patogenicidad , Inmunidad de la Planta/genética , Uridina/genética , Uridina/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Interacciones Huésped-Patógeno/fisiología , Enfermedades de las Plantas/inmunología , Plantas Modificadas Genéticamente , Edición de ARN , Nicotiana/microbiología
12.
Plant Dis ; 105(8): 2160-2168, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33315483

RESUMEN

An emerging soilborne disease resembling Phytophthora stem rot was observed on mung bean plants grown in Anhui, China. To identify the causal agent, diseased plants and soil samples from 13 fields were collected to isolate the pathogen. Twenty-two Phytophthora isolates were recovered from the samples and detailed identification was conducted. Based on morphological and molecular characterizations, all of the isolates were consistently identified as P. vignae. Phylogenetic analysis using eight nuclear loci sequences of the internal transcribed spacer region, rRNA gene large subunit, a partial sequence of the ß-tubulin gene, translation elongation factor 1α, 60S ribosomal protein L10, the enolase gene, heat shock protein 90, and triose phosphate isomerase/glyceraldehyde-3-phosphate dehydrogenase and a mitochondrial locus cytochrome c oxidase subunit I revealed that the mung bean isolates grouped in the same clade as P. vignae and its two formae speciales, P. vignae f. sp. adzukicola and P. vignae f. sp. vignae. A host specificity test showed that the mung bean isolates of P. vignae were pathogenic toward mung bean with a much stronger virulence and toward adzuki bean with a relatively weak virulence, but they were nonpathogenic to the other tested legume crops, including soybean, cowpea, pea, common bean, faba bean, and chickpea. The host range of mung bean isolates significantly differs from those of P. vignae f. sp. adzukicola and P. vignae f. sp. vignae based on our results and on previous studies. Thus, the pathogen causing Phytophthora stem rot of mung bean is proposed as a new forma specialis of P. vignae, designated as P. vignae f. sp. mungcola.


Asunto(s)
Fabaceae , Phytophthora , Vigna , Filogenia , Phytophthora/genética , Enfermedades de las Plantas
13.
Plant Dis ; 105(11): 3732-3735, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34003033

RESUMEN

Phytophthora vignae is an important oomycete pathogen causing Phytophthora stem rot on some Vigna spp. Three P. vignae isolates obtained from mung bean, adzuki bean, and cowpea exhibited high similarities in morphology and physiology but are specialized to infect different hosts. Here, we report the first de novo assembly of the draft genomes of three P. vignae isolates, which were performed using the PacBio SMRT Sequel platform. This study will extend the genomic resource available for the Phytophthora genus and provide a good foundation for further research on comparative genomics of Phytophthora spp. and interaction mechanism between hosts and pathogens.


Asunto(s)
Fabaceae , Phytophthora , Vigna , Genómica , Phytophthora/genética , Análisis de Secuencia de ADN
14.
J Integr Plant Biol ; 63(5): 961-976, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33205861

RESUMEN

In plants, recognition of small secreted peptides, such as damage/danger-associated molecular patterns (DAMPs), regulates diverse processes, including stress and immune responses. Here, we identified an SGPS (Ser-Gly-Pro-Ser) motif-containing peptide, Nicotiana tabacum NtPROPPI, and its two homologs in Nicotiana benthamiana, NbPROPPI1 and NbPROPPI2. Phytophthora parasitica infection and salicylic acid (SA) treatment induced NbPROPPI1/2 expression. Moreover, SignalP predicted that the 89-amino acid NtPROPPI includes a 24-amino acid N-terminal signal peptide and NbPROPPI1/2-GFP fusion proteins were mainly localized to the periplasm. Transient expression of NbPROPPI1/2 inhibited P. parasitica colonization, and NbPROPPI1/2 knockdown rendered plants more susceptible to P. parasitica. An eight-amino-acid segment in the NbPROPPI1 C-terminus was essential for its immune function and a synthetic 20-residue peptide, NbPPI1, derived from the C-terminus of NbPROPPI1 provoked significant immune responses in N. benthamiana. These responses led to enhanced accumulation of reactive oxygen species, activation of mitogen-activated protein kinases, and up-regulation of the defense genes Flg22-induced receptor-like kinase (FRK) and WRKY DNA-binding protein 33 (WRKY33). The NbPPI1-induced defense responses require Brassinosteroid insensitive 1-associated receptor kinase 1 (BAK1). These results suggest that NbPPI1 functions as a DAMP in N. benthamiana; this novel DAMP provides a potentially useful target for improving plant resistance to Pytophthora pathogens.


Asunto(s)
Nicotiana/microbiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/fisiología , Regulación de la Expresión Génica de las Plantas , Inmunidad de la Planta/genética , Inmunidad de la Planta/fisiología , Proteínas de Plantas/genética
15.
New Phytol ; 2019 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-31436314

RESUMEN

Oomycete pathogens secrete numerous effectors to manipulate host immunity. While some effectors share a conserved structural fold, it remains unclear if any have conserved host targets. Avr3a-like family effectors, which are related to Phytophthora infestans effector PiAvr3a and are widely distributed across diverse clades of Phytophthora species, were used to study this question. By using yeast-two-hybrid, bimolecular fluorescence complementation and co-immunoprecipitation assays, we identified members of the plant cinnamyl alcohol dehydrogenase 7 (CAD7) subfamily as targets of multiple Avr3a-like effectors from Phytophthora pathogens. The CAD7 subfamily has expanded in plant genomes but lost the lignin biosynthetic activity of canonical CAD subfamilies. In turn, we identified CAD7s as negative regulators of plant immunity that are induced by Phytophthora infection. Moreover, AtCAD7 was stabilized by Avr3a-like effectors and involved in suppression of pathogen-associated molecular pattern-triggered immunity, including callose deposition, reactive oxygen species burst and WRKY33 expression. Our results reveal CAD7 subfamily proteins as negative regulators of plant immunity that are exploited by multiple Avr3a-like effectors to promote infection in different host plants.

16.
Plant Dis ; 103(10): 2599-2605, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31339441

RESUMEN

Tobacco black shank, caused by Phytophthora parasitica, is one of the most notorious tobacco diseases and causes huge economic losses worldwide. Understanding the genetic variation of P. parasitica populations is essential to the development of disease control measures. In this research, 210 simple sequence repeat (SSR) markers for P. parasitica were identified, 10 of which were polymorphic among nine reference strains. We further performed population genetic analysis of 245 P. parasitica isolates randomly collected from tobacco fields in Chongqing for mating type, molecular variation at 14 SSR loci (four of which were identified previously), and sensitivity to the fungicide metalaxyl. The results showed that the A2 mating type was dominant and no A1 mating type isolate was discovered. SSR genotyping distinguished 245 P. parasitica isolates into 46 genotypes, four of which were dominant in the population. Low genotypic diversity and excess heterozygosity were common in nearly all of the populations from Chongqing. Population analysis showed that no differentiation existed among different populations. All isolates tested were highly sensitive to metalaxyl. Taken together, our results showed that the P. parasitica populations from tobacco fields in Chongqing belonged to a clonal lineage and were highly sensitive to metalaxyl.


Asunto(s)
Genética de Población , Nicotiana , Phytophthora , Alanina/análogos & derivados , Alanina/farmacología , China , Genotipo , Repeticiones de Microsatélite/genética , Phytophthora/efectos de los fármacos , Phytophthora/genética , Nicotiana/parasitología
17.
Mol Plant Microbe Interact ; 29(3): 187-96, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26524162

RESUMEN

Plants have developed diverse molecular and cellular mechanisms to cope with a lifetime of exposure to a variety of pathogens. Host transcriptional reprogramming is a central part of plant defense upon pathogen recognition. Recent studies link DNA methylation and demethylation as well as chromatin remodeling by posttranslational histone modifications, including acetylation, methylation, and ubiquitination, to changes in the expression levels of defense genes upon pathogen challenge. Remarkably these inducible defense mechanisms can be primed prior to pathogen attack by epigenetic modifications and this heightened resistance state can be transmitted to subsequent generations by inheritance of these modification patterns. Beside the plant host, epigenetic mechanisms have also been implicated in virulence development of pathogens. This review highlights recent findings and insights into epigenetic mechanisms associated with interactions between plants and pathogens, in particular bacterial and fungal pathogens, and demonstrates the positive role they can have in promoting plant defense.


Asunto(s)
Epigénesis Genética/fisiología , Enfermedades de las Plantas/microbiología , Plantas/metabolismo , Plantas/microbiología , ADN de Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Plantas/genética
18.
New Phytol ; 209(4): 1641-54, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26484750

RESUMEN

Oomycete pathogens cause serious damage to a wide spectrum of plants. Although host pathogen recognition via pathogen effectors and cognate plant resistance proteins is well established, the genetic basis of host factors that mediate plant susceptibility to oomycete pathogens is relatively unexplored. Here, we report on RTP1, a nodulin-related MtN21 family gene in Arabidopsis that mediates susceptibility to Phytophthora parasitica. RTP1 was identified by screening a T-DNA insertion mutant population and encoded an endoplasmic reticulum (ER)-localized protein. Overexpression of RTP1 rendered Arabidopsis more susceptible, whereas RNA silencing of RTP1 led to enhanced resistance to P. parasitica. Moreover, an RTP1 mutant, rtp1-1, displayed localized cell death, increased reactive oxygen species (ROS) production and accelerated PR1 expression, compared to the wild-type Col-0, in response to P. parasitica infection. rtp1-1 showed a similar disease response to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000, including increased disease resistance, cell death and ROS production. Furthermore, rpt1-1 exhibited resistance to the fungal pathogen Golovinomyces cichoracearum, but not to the necrotrophic pathogen Botrytis cinerea. Taken together, these results suggest that RTP1 negatively regulates plant resistance to biotrophic pathogens, possibly by regulating ROS production, cell death progression and PR1 expression.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiología , Resistencia a la Enfermedad , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Enfermedades de las Plantas/microbiología , Arabidopsis/genética , Botrytis/fisiología , Muerte Celular , Resistencia a la Enfermedad/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas Fluorescentes Verdes/metabolismo , Mutación/genética , Phytophthora/fisiología , Raíces de Plantas/microbiología , Pseudomonas syringae/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Fracciones Subcelulares/metabolismo , Transformación Genética
19.
New Phytol ; 230(2): 878, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33729595
20.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(2): 515-9, 2016 Feb.
Artículo en Zh | MEDLINE | ID: mdl-27209760

RESUMEN

Hyperspectral imaging feature on potato leaves stressed by late blight was studied in the present paper. The experiment used 60 potato leaves. Among those 60 potato leaves, 48 leaves were vitro inoculated with pathogen of potato late blight, the rest 12 leaves were used as control samples. The leaves were observed for 7 continuous days before and after inoculated and samples including healthy and infested were acquired. Hyperspectral data of healthy and infected potato samples of different disease severity were obtained by the hyperspectral imaging system from 374 to 1,018 nm and then extract spectral data of region of interest (ROI) from those hyperspectral data by the ENVI software. In order to improve the signal-to-noise ratio, the spectral data were preprocessed using different pretreatment methods such as moving average smoothing, normalization, derivative, baseline etc. The least squares-support vector machine(LS-SVM) models were developed based on the raw and those preprocessed data. Among the nine models, the model that used the raw data and the data after the spectroscopic transformation performed best with the discrimination of 94.87%. It was demonstrated that it is realized to determine the potato late blight disease of different disease severity using hyperspectral imaging technique.


Asunto(s)
Enfermedades de las Plantas , Hojas de la Planta/microbiología , Solanum tuberosum/microbiología , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA