RESUMEN
The coronavirus disease 2019 (COVID-19) pandemic is a global public health crisis. However, little is known about the pathogenesis and biomarkers of COVID-19. Here, we profiled host responses to COVID-19 by performing plasma proteomics of a cohort of COVID-19 patients, including non-survivors and survivors recovered from mild or severe symptoms, and uncovered numerous COVID-19-associated alterations of plasma proteins. We developed a machine-learning-based pipeline to identify 11 proteins as biomarkers and a set of biomarker combinations, which were validated by an independent cohort and accurately distinguished and predicted COVID-19 outcomes. Some of the biomarkers were further validated by enzyme-linked immunosorbent assay (ELISA) using a larger cohort. These markedly altered proteins, including the biomarkers, mediate pathophysiological pathways, such as immune or inflammatory responses, platelet degranulation and coagulation, and metabolism, that likely contribute to the pathogenesis. Our findings provide valuable knowledge about COVID-19 biomarkers and shed light on the pathogenesis and potential therapeutic targets of COVID-19.
Asunto(s)
Infecciones por Coronavirus/sangre , Infecciones por Coronavirus/patología , Plasma/metabolismo , Neumonía Viral/sangre , Neumonía Viral/patología , Adulto , Anciano , Anciano de 80 o más Años , Betacoronavirus , Biomarcadores/sangre , Proteínas Sanguíneas/metabolismo , COVID-19 , Infecciones por Coronavirus/clasificación , Infecciones por Coronavirus/metabolismo , Femenino , Humanos , Aprendizaje Automático , Masculino , Persona de Mediana Edad , Pandemias/clasificación , Neumonía Viral/clasificación , Neumonía Viral/metabolismo , Proteómica , Reproducibilidad de los Resultados , SARS-CoV-2RESUMEN
The COVID-19 pandemic has incurred tremendous costs worldwide and is still threatening public health in the "new normal." The association between neutralizing antibody levels and metabolic alterations in convalescent patients with COVID-19 is still poorly understood. In the present work, we conducted absolutely quantitative profiling to compare the plasma cytokines and metabolome of ordinary convalescent patients with antibodies (CA), convalescents with rapidly faded antibodies (CO), and healthy subjects. As a result, we identified that cytokines such as M-CSF and IL-12p40 and plasma metabolites such as glycylproline (gly-pro) and long-chain acylcarnitines could be associated with antibody fading in COVID-19 convalescent patients. Following feature selection, we built machine-learning-based classification models using 17 features (six cytokines and 11 metabolites). Overall accuracies of more than 90% were attained in at least six machine-learning models. Of note, the dipeptide gly-pro, a product of enzymatic peptide cleavage catalyzed by dipeptidyl peptidase 4 (DPP4), strongly accumulated in CO individuals compared with the CA group. Furthermore, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination experiments in healthy mice demonstrated that supplementation of gly-pro down-regulates SARS-CoV-2-specific receptor-binding domain antibody levels and suppresses immune responses, whereas the DPP4 inhibitor sitagliptin can counteract the inhibitory effects of gly-pro upon SARS-CoV-2 vaccination. Our findings not only reveal the important role of gly-pro in the immune responses to SARS-CoV-2 infection but also indicate a possible mechanism underlying the beneficial outcomes of treatment with DPP4 inhibitors in convalescent COVID-19 patients, shedding light on therapeutic and vaccination strategies against COVID-19.
Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Tratamiento Farmacológico de COVID-19 , COVID-19 , Convalecencia , Citocinas , Dipéptidos , Inhibidores de la Dipeptidil-Peptidasa IV , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Formación de Anticuerpos , COVID-19/sangre , COVID-19/inmunología , Citocinas/sangre , Dipéptidos/sangre , Dipeptidil Peptidasa 4/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Humanos , Aprendizaje Automático , Metaboloma , Ratones , SARS-CoV-2 , VacunaciónRESUMEN
Invasive pulmonary aspergillosis (IPA) is a life-threatening complication in patients with severe fever with thrombocytopenia syndrome (SFTS), yet SFTS-associated IPA (SAPA)'s risk factors remain undefined. A multicenter retrospective cohort study across Hubei and Anhui provinces (May 2013-September 2022) utilized least absolute shrinkage and selection operator (LASSO) regression for variable selection. Multivariable logistic regression identified independent predictors of SAPA, Cox regression highlighted mortality-related risk factors. Of the 1775 screened SFTS patients, 1650 were included, with 169 developing IPA, leading to a 42-day mortality rate of 26.6% among SAPA patients. Multivariable logistic regression revealed SAPA risk factors including advanced age, petechia, hemoptysis, tremor, low albumin levels, elongated activated partial thromboplastin time (APTT), intensive care unit (ICU) admission, glucocorticoid usage, intravenous immunoglobulin (IVIG) and prolonged hospital stays. Cox regression identified predictors of 42-day mortality, including ecchymosis at venipuncture sites, absence of ICU admission, elongated prothrombin time (PT), vasopressor and glucocorticoid use, non-antifungals. Nomograms constructed on these predictors registered concordance indexes of 0.855 (95% CI: 0.826-0.884) and 0.778 (95% CI: 0.702-0.854) for SAPA onset and 42-day mortality, respectively. Lower survival rates for SAPA patients treated with glucocorticoids (p < 0.001) and improved 14-day survival with antifungal therapy (p = 0.036). Improving IPA management in SFTS-endemic areas is crucial, with effective predictive tool.
Asunto(s)
Aspergilosis Pulmonar Invasiva , Síndrome de Trombocitopenia Febril Grave , Humanos , Estudios Retrospectivos , Masculino , Femenino , Persona de Mediana Edad , Factores de Riesgo , Aspergilosis Pulmonar Invasiva/mortalidad , Aspergilosis Pulmonar Invasiva/complicaciones , Aspergilosis Pulmonar Invasiva/tratamiento farmacológico , Síndrome de Trombocitopenia Febril Grave/complicaciones , Anciano , China/epidemiología , AdultoRESUMEN
OBJECTIVE: Our study aimed to investigate the effects of different extracorporeal membrane oxygenation (ECMO) blood flow rates on lung perfusion assessment using the saline bolus-based electrical impedance tomography (EIT) technique in patients on veno-venous (VV) ECMO. METHODS: In this single-centered prospective physiological study, patients on VV ECMO who met the ECMO weaning criteria were assessed for lung perfusion using saline bolus-based EIT at various ECMO blood flow rates (gradually decreased from 4.5 L/min to 3.5 L/min, 2.5 L/min, 1.5 L/min, and finally to 0 L/min). Lung perfusion distribution, dead space, shunt, ventilation/perfusion matching, and recirculation fraction at different flow rates were compared. RESULTS: Fifteen patients were included. As the ECMO blood flow rate decreased from 4.5 L/min to 0 L/min, the recirculation fraction decreased significantly. The main EIT-based findings were as follows. (1) Median lung perfusion significantly increased in region-of-interest (ROI) 2 and the ventral region [38.21 (34.93-42.16)% to 41.29 (35.32-43.75)%, p = 0.003, and 48.86 (45.53-58.96)% to 54.12 (45.07-61.16)%, p = 0.037, respectively], whereas it significantly decreased in ROI 4 and the dorsal region [7.87 (5.42-9.78)% to 6.08 (5.27-9.34)%, p = 0.049, and 51.14 (41.04-54.47)% to 45.88 (38.84-54.93)%, p = 0.037, respectively]. (2) Dead space significantly decreased, and ventilation/perfusion matching significantly increased in both the ventral and global regions. (3) No significant variations were observed in regional and global shunt. CONCLUSIONS: During VV ECMO, the ECMO blood flow rate, closely linked to recirculation fraction, could affect the accuracy of lung perfusion assessment using hypertonic saline bolus-based EIT.
Asunto(s)
Impedancia Eléctrica , Oxigenación por Membrana Extracorpórea , Pulmón , Tomografía , Humanos , Oxigenación por Membrana Extracorpórea/métodos , Masculino , Femenino , Estudios Prospectivos , Impedancia Eléctrica/uso terapéutico , Persona de Mediana Edad , Adulto , Tomografía/métodos , Pulmón/irrigación sanguínea , Pulmón/fisiopatología , Pulmón/diagnóstico por imagen , Solución Salina Hipertónica/uso terapéutico , Anciano , Velocidad del Flujo Sanguíneo/fisiologíaRESUMEN
Impairment of innate immune cell function and metabolism underlies immunosuppression in sepsis; however, a promising therapy to orchestrate this impairment is currently lacking. In this study, high levels of NOD-like receptor family CARD domain containing-3 (NLRC3) correlated with the glycolytic defects of monocytes/macrophages from septic patients and mice that developed immunosuppression. Myeloid-specific NLRC3 deletion improved macrophage glycolysis and sepsis-induced immunosuppression. Mechanistically, NLRC3 inhibits nuclear factor (NF)-κB p65 binding to nuclear factor of activated T cells 5 (NFAT5), which further controls the expression of glycolytic genes and proinflammatory cytokines of immunosuppressive macrophages. This is achieved by decreasing NF-κB activation-co-induced by TNF-receptor-associated factor 6 (TRAF6) or mammalian target of rapamycin (mTOR)-and decreasing transcriptional co-activator p300 activity by inducing NLRC3 sequestration of mTOR and p300. Genetic inhibition of NLRC3 disrupted the NLRC3-mTOR-p300 complex and enhanced NF-κB binding to the NFAT5 promoter in concert with p300. Furthermore, intrapulmonary delivery of recombinant adeno-associated virus harboring a macrophage-specific NLRC3 deletion vector significantly improved the defense of septic mice that developed immunosuppression upon secondary intratracheal bacterial challenge. Collectively, these findings indicate that NLRC3 mediates critical aspects of innate immunity that contribute to an immunocompromised state during sepsis and identify potential therapeutic targets.
Asunto(s)
Tolerancia Inmunológica , Péptidos y Proteínas de Señalización Intercelular , Macrófagos , FN-kappa B , Sepsis , Factores de Transcripción , Animales , Ratones , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Macrófagos/inmunología , FN-kappa B/metabolismo , Sepsis/inmunología , Sepsis/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/metabolismo , Huésped InmunocomprometidoRESUMEN
OBJECTIVE: To compare the efficacy and safety of remimazolam besylate and propofol for deep sedation in critically ill patients. METHODS: In this single-center, prospective, randomized, controlled pilot study, patients in the intensive care unit (ICU) requiring deep sedation were randomized to receive remimazolam besylate or propofol intravenously. Deep sedation was defined as a Richmond Agitation and Sedation Scale (RASS) score of - 4 or - 5. Sedation depth was monitored using RASS and Narcotrend Index (NI). The primary outcome was the percentage of time within the target sedation range without rescue sedation. The secondary outcomes included ventilator-free hours within 7 days, successful extubation, length of ICU stay, and 28-day mortality. Adverse events during the interventional period were also recorded. RESULTS: Thirty patients were assigned to each group. The median (IQR) RASS score was - 5.0 (- 5.0, - 4.0), and the median (IQR) NI value was 29.0 (21.0, 37.0) during the intervention period. Target RASS was reached a median of 100% of the sedation time in the two groups. No significant differences were observed in ventilator-free hours within 7 days, successful extubation, length of ICU stay, or 28-day mortality among groups. Hypotension occurred in 16 (53.3%) patients of remimazolam group and 18 (60.0%) patients of propofol group (p > 0.05). No patient experienced bradycardia. CONCLUSIONS: Remimazolam besylate appears to be an effective and safe agent for short-term deep sedation in critically ill patients. Our findings warrant large sample-sized randomized clinical trials.
Asunto(s)
Sedación Profunda , Propofol , Humanos , Enfermedad Crítica/terapia , Hipnóticos y Sedantes/farmacología , Hipnóticos y Sedantes/uso terapéutico , Proyectos Piloto , Propofol/farmacología , Propofol/uso terapéutico , Estudios Prospectivos , Respiración ArtificialRESUMEN
OBJECTIVE: The aim of this study was to investigate the physiological impact of airway pressure release ventilation (APRV) on patients with early moderate-to-severe acute respiratory distress syndrome (ARDS) by electrical impedance tomography (EIT). METHODS: In this single-center prospective physiological study, adult patients with early moderate-to-severe ARDS mechanically ventilated with APRV were assessed by EIT shortly after APRV (T0), and 6 h (T1), 12 h (T2), and 24 h (T3) after APRV initiation. Regional ventilation and perfusion distribution, dead space (%), shunt (%), and ventilation/perfusion matching (%) based on EIT measurement at different time points were compared. Additionally, clinical variables related to respiratory and hemodynamic condition were analyzed. RESULTS: Twelve patients were included in the study. After APRV, lung ventilation and perfusion were significantly redistributed to dorsal region. One indicator of ventilation distribution heterogeneity is the global inhomogeneity index, which decreased gradually [0.61 (0.55-0.62) to 0.50 (0.42-0.53), p < 0.001]. The other is the center of ventilation, which gradually shifted towards the dorsal region (43.31 ± 5.07 to 46.84 ± 4.96%, p = 0.048). The dorsal ventilation/perfusion matching increased significantly from T0 to T3 (25.72 ± 9.01 to 29.80 ± 7.19%, p = 0.007). Better dorsal ventilation (%) was significantly correlated with higher PaO2/FiO2 (r = 0.624, p = 0.001) and lower PaCO2 (r = -0.408, p = 0.048). CONCLUSIONS: APRV optimizes the distribution of ventilation and perfusion, reducing lung heterogeneity, which potentially reduces the risk of ventilator-induced lung injury.
Asunto(s)
Presión de las Vías Aéreas Positiva Contínua , Síndrome de Dificultad Respiratoria , Adulto , Humanos , Impedancia Eléctrica , Estudios Prospectivos , Respiración , Síndrome de Dificultad Respiratoria/terapia , Tomografía Computarizada por Rayos X , Pulmón/diagnóstico por imagenRESUMEN
BACKGROUND: Several biomarkers could be intercalated with traditional measures to improve ARDS diagnostics. METHODS: There were 211 ICU patients enrolled in this retrospective, nested case-control study. Participants were divided into an ARDS (n = 79) and non-ARDS (n = 132) groups, according to the Berlin criteria. Patient characteristics, vital signs, and laboratory tests were collected within three hours of admission. CC16, Ang-2, sRAGE, HMGB1, and SPD were measured within three hours and again at 24 hours, after admission to ICU. Receiver Operating Characteristic curves and multivariate logistic regression analyses were applied for predictive purposes. RESULTS: C-reactive protein (CRP), NT-proBNP, and pH values were intercalated with five established ARDS indicators, and the PaO2/FiO2 ratio. Only four potential indicators were analyzed, with CRP having high diagnostic value. Areas under curve (AUC) were as follows: CC16 (AUC: 0.752; 95% CI 0.680 - 0.824), Ang-2 (AUC: 0.695; 95% CI 0.620 - 0.770), HMGB1 (AUC: 0.668; 95% CI 0.592 - 0.744), sRAGE (AUC: 0.665; 95% CI 0.588 - 0.743), CRP (AUC: 0.701; 95% CI 0.627 - 0.776). No single indicator improved upon the PaO2/FiO2 ratio which had an AUC: 0.844 (95% CI 0.789 - 0.898). However, when the binary logistic model was transformed and the model was constructed, the AUC increased from 0.647 (95% CI 0.568 - 0.726) to 0.911 (95% CI 0.864 - 0.946). Among the combinations tested, PaO2/FiO2 + CRP + Ang-2 + CC16 + HMGB1 resulted in the highest AUC of 0.910 (95% CI 0.863 - 0.945), although there are other factors which must be considered. CONCLUSIONS: A combination of biomarkers could enhance ARDS diagnostics, which has obvious ramifications for patient care and prognosis. It may be possible to develop a predictive ARDS nomogram; however, of the combinations tested here, we tentatively recommend PaO2/FiO2 + CRP + Ang-2 + CC16 + HMGB1. This is because of the cost implications in contrast with benefit involved in utilizing the more elaborate model. Further health economics research is required to consider the opportunity cost for emergency care policy.
Asunto(s)
Proteína HMGB1 , Síndrome de Dificultad Respiratoria , Humanos , Estudios Retrospectivos , Estudios de Casos y Controles , Síndrome de Dificultad Respiratoria/diagnóstico , Biomarcadores , Pronóstico , Proteína C-Reactiva , Curva ROCRESUMEN
OBJECTIVE: The aim of this study was to evaluate the efficacy and safety of remimazolam besylate compared with propofol in maintaining mild-to-moderate sedation in patients receiving long-term mechanical ventilation. METHODS: In this single-centered randomized pilot study, adult patients mechanically ventilated longer than 24 h were randomized to receive remimazolam besylate or propofol. The target sedation range was - 3 to 0 on the Richmond Agitation and Sedation Scale (RASS). The primary outcome was the percentage of time in the target sedation range without rescue sedation. The secondary outcomes were ventilator-free days at day 7, the length of ICU stay and 28-day mortality. RESULTS: Thirty patients were assigned to each group. No difference was identified between the remimazolam group and propofol group in median age [60.0 (IQR, 51.5-66.3) years vs. 64.0 (IQR, 55.0-69.3) years, respectively, p = 0.437] or the median duration of study drug infusion [55.0 (IQR, 28.3-102.0) hours vs. 41.0 (IQR, 24.8-74.3) hours, respectively, p = 0.255]. The median percentage of time in the target RASS range without rescue sedation was similar in remimazolam and propofol groups [73.2% (IQR, 41.5-97.3%) vs. 82.8% (IQR, 65.6-100%), p = 0.269]. No differences were identified between the two groups in terms of ventilator-free days at day 7, length of ICU stay, 28-day mortality or adverse events. CONCLUSIONS: This pilot study suggested that remimazolam besylate was effective and safe for long-term sedation in mechanically ventilated patients compared with propofol.
Asunto(s)
Propofol , Adulto , Anciano , Benzodiazepinas , Humanos , Hipnóticos y Sedantes/farmacología , Hipnóticos y Sedantes/uso terapéutico , Persona de Mediana Edad , Proyectos Piloto , Propofol/efectos adversos , Respiración ArtificialRESUMEN
In this work, a magnetic octahedral metal-organic framework (Fe3 O4 @NH2 -MIL-101(Fe)) was synthesized for the magnetic solid-phase extraction of three anthraquinones, including aloe-emodin, emodin, and physcion, in rhubarb. The Fe3 O4 @NH2 -MIL-101(Fe) exhibits a high specific surface area of 259.2 m2 /g with an average pore size of 6.0 nm and high magnetic responsivity of 23.4 emu/g, which may be used as an adsorbent for rapid preconcentration and separation of target analytes. The main parameters for magnetic solid-phase extraction of anthraquinones, including the amount of adsorbent, extraction time, extraction temperature, extraction pH, elution solvent, and elution time, were systematically optimized. The whole extraction process requires a very low amount of adsorbent and a small volume of the sample. Besides, under the optimized conditions, the method shows satisfactory spiked recovery for anthraquinones in the range of 93.3-109.1% and the limits of detection are 1.7-3.4 ng/mL. The relative standard deviations for intra- and inter-day precision are 0.2-1.3% and 0.2-0.6%, respectively. The experimental results indicate that the developed method is feasible for the analysis of anthraquinones in rhubarb.
Asunto(s)
Emodina , Estructuras Metalorgánicas , Rheum , Antraquinonas/análisis , Cromatografía Líquida de Alta Presión/métodos , Fenómenos Magnéticos , Extracción en Fase Sólida/métodosRESUMEN
COVID-19 has inflicted the world for over two years. The recent mutant virus strains pose greater challenges to disease prevention and treatment. COVID-19 can cause acute respiratory distress syndrome (ARDS) and extrapulmonary injury. Dynamic monitoring of each patient's condition is necessary to timely tailor treatments, improve prognosis and reduce mortality. Point-of-care ultrasound (POCUS) is broadly used in patients with ARDS. POCUS is recommended to be performed regularly in COVID-19 patients for respiratory failure management. In this review, we summarized the ultrasound characteristics of COVID-19 patients, mainly focusing on lung ultrasound and echocardiography. Furthermore, we also provided the experience of using POCUS to manage COVID-19-related ARDS.
Asunto(s)
COVID-19/diagnóstico por imagen , Ecocardiografía , Pulmón/diagnóstico por imagen , Pruebas en el Punto de Atención , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Terapia Respiratoria/métodos , COVID-19/terapia , Humanos , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/virologíaRESUMEN
BACKGROUND: The cholinergic anti-inflammatory pathway connects the immune response system and the nervous system via the vagus nerve. The key regulatory receptor is the α7-subtype of the nicotinic acetylcholine receptor (α7nAChR). Cholinergic anti-inflammatory pathway has been proved to be effective in suppressing the inflammation responses in acute lung injury (ALI). Dendritic cells (DCs), the important antigen-presenting cells, also express the α7nAChR. Past studies have indicated that reducing the quantity of mature conventional DCs and inhibiting the maturation of pulmonary DCs may prove effective for the treatment of ALI. However, the effects of cholinergic anti-inflammatory pathway on maturation, function, and quantity of DCs and conventional DCs in ALI remain unclear. OBJECTIVE: It was hypothesized that cholinergic anti-inflammatory pathway may inhibit the inflammatory response of ALI by regulating maturation, phenotype, and quantity of DCs and conventional DCs. METHODS: GTS-21 (GTS-21 dihydrochloride), an α7nAchR agonist, was prophylactically administered in sepsis-induced ALI mouse model and LPS-primed bone marrow-derived dendritic cells. The effects of GTS-21 were observed with respect to maturation, phenotype, and quantity of DCs, conventional DCs, and conventional DCs2 (type 2 conventional DCs) and the release of DC-related proinflammatory cytokines in vivo and in vitro. RESULTS: The results of the present study revealed that GTS-21 treatment decreased the maturation of DCs and the production of DC-related proinflammatory cytokines in vitro and in sepsis-induced ALI mouse model; it reduced the quantity of CD11c+MHCII+ conventional DCs and CD11c+CD11b+ conventional DCs2 in vivo experiment. CONCLUSIONS: Cholinergic anti-inflammatory pathway contributes to the reduction in the inflammatory response in ALI by regulating maturation, phenotype, and quantity of DCs, conventional DCs, and conventional DCs2.
Asunto(s)
Lesión Pulmonar Aguda , Sepsis , Lesión Pulmonar Aguda/metabolismo , Animales , Células Dendríticas/metabolismo , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Ratones , Neuroinmunomodulación , Sepsis/metabolismoRESUMEN
Epithelial-mesenchymal transition (EMT) plays a crucial role in the development of pulmonary fibrosis. This study aims to investigate the effects of valproic acid (VPA) on EMT in vitro and in vivo. In vitro, EMT was induced by the administration of transforming growth factor-ß1 (TGF-ß1) in a human alveolar epithelial cell line (A549). The dose effects of VPA (0.1-3 mM) on EMT were subsequently evaluated at different timepoints. VPA (1 mM) was applied prior to the administration of TGF-ß1 and the expression of E-cadherin, vimentin, p-Smad2/3 and p-Akt was assessed. In addition, the effects of a TGF-ß type I receptor inhibitor (A8301) and PI3K-Akt inhibitor (LY294002) on EMT were evaluated. In vivo, the effects of VPA on bleomycin-induced lung fibrosis were evaluated by assessing variables such as survival rate, body weight and histopathological changes, whilst the expression of E-cadherin and vimentin in lung tissue was also evaluated. A8301 and LY294002 were used to ascertain the cellular signaling pathways involved in this model. The administration of VPA prior to TGF-ß1 in A549 cells prevented EMT in both a time- and concentration-dependent manner. Pretreatment with VPA downregulated the expression of both p-Smad2/3 and p-Akt. A8301 administration increased the expression of E-cadherin and reduced the expression of vimentin. LY294002 inhibited Akt phosphorylation induced by TGF-ß1 but failed to prevent EMT. Pretreatment with VPA both increased the survival rate and prevented the loss of body weight in mice with pulmonary fibrosis. Interestingly, both VPA and A8301 prevented EMT and facilitated an improvement in lung structure. Overall, pretreatment with VPA attenuated the development of pulmonary fibrosis by inhibiting EMT in mice, which was associated with Smad2/3 deactivation but without Akt cellular signal involvement.
Asunto(s)
Transición Epitelial-Mesenquimal/efectos de los fármacos , Pulmón/efectos de los fármacos , Fibrosis Pulmonar/metabolismo , Ácido Valproico/farmacología , Células A549 , Animales , Humanos , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Proteínas Smad Reguladas por Receptores/metabolismo , Factor de Crecimiento Transformador beta1/metabolismoRESUMEN
BACKGROUND: Atrial natriuretic peptide (ANP) secreted from atrial myocytes is shown to possess anti-inflammatory, anti-oxidant and immunomodulatory effects. The aim of this study is to assess the effect of ANP on bacterial lipopolysaccharide (LPS)-induced endotoxemia-derived neuroinflammation and cognitive impairment. METHODS: LPS (5 mg/kg) was given intraperitoneally to mice. Recombinant human ANP (rhANP) (1.0 mg/kg) was injected intravenously 24 h before and/or 10 min after LPS injection. Subdiaphragmatic vagotomy (SDV) was performed 14 days before LPS injection or 28 days before fecal microbiota transplantation (FMT). ANA-12 (0.5 mg/kg) was administrated intraperitoneally 30 min prior to rhANP treatment. RESULTS: LPS (5.0 mg/kg) induced remarkable splenomegaly and an increase in the plasma cytokines at 24 h after LPS injection. There were positive correlations between spleen weight and plasma cytokines levels. LPS also led to increased protein levels of ionized calcium-binding adaptor molecule (iba)-1, cytokines and inducible nitric oxide synthase (iNOS) in the hippocampus. LPS impaired the natural and learned behavior, as demonstrated by an increase in the latency to eat the food in the buried food test and a decrease in the number of entries and duration in the novel arm in the Y maze test. Combined prophylactic and therapeutic treatment with rhANP reversed LPS-induced splenomegaly, hippocampal and peripheral inflammation as well as cognitive impairment. However, rhANP could not further enhance the protective effects of SDV on hippocampal and peripheral inflammation. We further found that PGF mice transplanted with fecal bacteria from rhANP-treated endotoxemia mice alleviated the decreased protein levels of hippocampal polyclonal phosphorylated tyrosine kinase receptor B (p-TrkB), brain-derived neurotrophic factor (BDNF) and cognitive impairment, which was abolished by SDV. Moreover, TrkB/BDNF signaling inhibitor ANA-12 abolished the improving effects of rhANP on LPS-induced cognitive impairment. CONCLUSIONS: Our results suggest that rhANP could mitigate LPS-induced hippocampal inflammation and cognitive dysfunction through subdiaphragmatic vagus nerve-mediated gut microbiota-brain axis.
Asunto(s)
Factor Natriurético Atrial/farmacología , Eje Cerebro-Intestino/efectos de los fármacos , Disfunción Cognitiva/inducido químicamente , Endotoxinas/antagonistas & inhibidores , Microbioma Gastrointestinal/efectos de los fármacos , Nervio Vago/microbiología , Animales , Disfunción Cognitiva/psicología , Endotoxinas/toxicidad , Heces/microbiología , Mediadores de Inflamación , Inyecciones Intraperitoneales , Lipopolisacáridos/antagonistas & inhibidores , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias/microbiología , Proteínas Recombinantes , VagotomíaRESUMEN
Recent studies revealed that macrophages are polarized towards the M2 phenotype in an ovalbumin (OVA)-induced asthmatic model. Alveolar macrophages (AMs) are immune barriers in alveoli to various pathogens in the respiratory tract; AMs suppress Th2 cell proliferation, inhibit interleukin (IL)-4, IL-5, and IL-13 secretion, and protect against airway hyperresponsiveness in allergic asthma. However, the polarization status and effects of different types of AMs in the pathogenesis of asthma are not known. ATP/P2X7r, expressed mainly on macrophages and dendritic cells, is associated with acute and chronic asthmatic airway inflammation and Th2 immune responses in mice and humans and functions by activating the NLRP3 inflammasome complex and inducing proinflammatory cytokine release (IL-1ß and IL-18). Therefore, we evaluated the association between the ATP/P2X7r axis and different types of AMs in the pathology of allergic asthma. A murine AM-depleted asthma model was established by administration of clodronate-encapsulated liposomes, and M1-or M2-AMs were adoptively transferred to confirm the effects of different AMs in allergic asthma. Brilliant Blue G and BzATP were administered to OVA/HDM-induced mice in vivo. Lipopolysaccharide + OVA, ATP, Brilliant Blue G, and BzATP were used to stimulate AMs isolated from control and asthmatic mice. We found that selective depletion of AMs aggravated lung inflammation in asthmatic mice. Further, M2-type AMs may play a key role in mediating asthmatic inflammatory responses via the adoptive transfer of M2-type AMs to AM-depleted asthmatic mice, and the phenotype of AMs differentiated to M2 type in asthma. P2X7r expression in M2-type AMs was higher than that in M1-type AMs. Activating P2X7r induced polarization of M2-type AMs and inhibited polarization of M1-type AMs, while blockage of P2X7r had the opposite effect. The ATP/P2X7r axis may participate in the pathogenesis of asthma by mediating the M2-type AM polarization.
Asunto(s)
Adenosina Trifosfato/metabolismo , Asma/inmunología , Activación de Macrófagos , Macrófagos Alveolares/inmunología , Receptores Purinérgicos P2X7/metabolismo , Animales , Asma/patología , Células Cultivadas , Femenino , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Ratones , Ratones Endogámicos C57BL , Transducción de SeñalRESUMEN
BACKGROUND: Sepsis and septic shock are life-threatening diseases with high mortality rate in intensive care unit (ICU). Acute kidney injury (AKI) is a common complication of sepsis, and its occurrence is a poor prognostic sign to septic patients. We analyzed co-differentially expressed genes (co-DEGs) to explore relationships between septic shock and AKI and reveal potential biomarkers and therapeutic targets of septic-shock-associated AKI (SSAKI). METHODS: Two gene expression datasets (GSE30718 and GSE57065) were downloaded from the Gene Expression Omnibus (GEO). The GSE57065 dataset included 28 septic shock patients and 25 healthy volunteers and blood samples were collected within 0.5, 24 and 48 h after shock. Specimens of GSE30718 were collected from 26 patients with AKI and 11 control patents. AKI-DEGs and septic-shock-DEGs were identified using the two datasets. Subsequently, Gene Ontology (GO) functional analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and protein-protein interaction (PPI) network analysis were performed to elucidate molecular mechanisms of DEGs. We also evaluated co-DEGs and corresponding predicted miRNAs involved in septic shock and AKI. RESULTS: We identified 62 DEGs in AKI specimens and 888, 870, and 717 DEGs in septic shock blood samples within 0.5, 24 and 48 h, respectively. The hub genes of EGF and OLFM4 may be involved in AKI and QPCT, CKAP4, PRKCQ, PLAC8, PRC1, BCL9L, ATP11B, KLHL2, LDLRAP1, NDUFAF1, IFIT2, CSF1R, HGF, NRN1, GZMB, and STAT4 may be associated with septic shock. Besides, co-DEGs of VMP1, SLPI, PTX3, TIMP1, OLFM4, LCN2, and S100A9 coupled with corresponding predicted miRNAs, especially miR-29b-3p, miR-152-3p, and miR-223-3p may be regarded as promising targets for the diagnosis and treatment of SSAKI in the future. CONCLUSIONS: Septic shock and AKI are related and VMP1, SLPI, PTX3, TIMP1, OLFM4, LCN2, and S100A9 genes are significantly associated with novel biomarkers involved in the occurrence and development of SSAKI.
Asunto(s)
Lesión Renal Aguda/genética , Choque Séptico/genética , Biomarcadores , Estudios de Casos y Controles , Biología Computacional , Perfilación de la Expresión Génica , Ontología de Genes , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Mapas de Interacción de ProteínasRESUMEN
Sleep is known to play an important role in immune function. However, the effects of sleep quality during hospitalization for COVID-19 remain unclear. This retrospective, single-center cohort study was conducted to investigate the effects of sleep quality on recovery from lymphopenia and clinical outcomes in hospitalized patients with laboratory-confirmed COVID-19 admitted to the West District of Wuhan Union Hospital between January 25 and March 15, 2020. The Richards-Campbell sleep questionnaire (RCSQ) and Pittsburgh Sleep Quality Index (PSQI) were used to assess sleep quality. The epidemiological, demographic, clinical, laboratory, treatment, and outcome data were collected from electronic medical records and compared between the good-sleep group and poor-sleep group. In all, 135 patients (60 in good-sleep group and 75 in poor-sleep group) were included in this study. There were no significant between-group differences regarding demographic and baseline characteristics, as well as laboratory parameters upon admission and in-hospital treatment. Compared with patients in the good-sleep group, patients in the poor-sleep group had lower absolute lymphocyte count (ALC) (day 14: median, 1.10 vs 1.32, P = 0.0055; day 21: median, 1.18 vs 1.48, P = 0.0034) and its reduced recovery rate (day 14: median, 56.91 vs 69.40, P = 0.0255; day 21: median, 61.40 vs 111.47, P = 0.0003), as well as increased neutrophil-to-lymphocyte ratio (NLR; day 14: median, 3.17 vs 2.44, P = 0.0284; day 21: median, 2.73 vs 2.23, P = 0.0092) and its associated deterioration rate (day 14: median, -39.65 vs -61.09, P = 0.0155; day 21: median, -51.40% vs -75.43, P = 0.0003). Nine [12.0%] patients in the poor-sleep group required ICU care (P = 0.0151); meanwhile, none of the patients in good-sleep group required ICU care. Patients in the poor-sleep group had increased duration of hospital stay (33.0 [23.0-47.0] days vs 25.0 [20.5-36.5] days, P = 0.0116) compared to those in the good-sleep group. An increased incidence of hospital-acquired infection (seven [9.3%] vs one [1.7%]) was observed in the poor-sleep group compared to the good-sleep group; however, this difference was not significant (P = 0.1316). In conclusion, poor sleep quality during hospitalization in COVID-19 patients with lymphopenia is associated with a slow recovery from lymphopenia and an increased need for ICU care.
Asunto(s)
Infecciones por Coronavirus/sangre , Linfopenia/sangre , Neumonía Viral/sangre , Trastornos del Inicio y del Mantenimiento del Sueño/fisiopatología , Sueño , Anciano , Betacoronavirus , COVID-19 , Convalecencia , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/fisiopatología , Infecciones por Coronavirus/terapia , Femenino , Ambiente de Instituciones de Salud , Hospitalización , Humanos , Unidades de Cuidados Intensivos/estadística & datos numéricos , Tiempo de Internación , Linfopenia/complicaciones , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/complicaciones , Neumonía Viral/fisiopatología , Neumonía Viral/terapia , Estudios Retrospectivos , SARS-CoV-2 , Trastornos del Inicio y del Mantenimiento del Sueño/complicaciones , Factores de TiempoRESUMEN
BACKGROUND: Alveolar epithelial cell apoptosis is implicated in the onset of ventilator-induced lung injury. Death-associated protein kinase 1 (DAPK1) is associated with cell apoptosis. The hypothesis was that DAPK1 participates in ventilator-induced lung injury through promoting alveolar epithelial cell apoptosis. METHODS: Apoptosis of mouse alveolar epithelial cell was induced by cyclic stretch. DAPK1 expression was altered (knockdown or overexpressed) in vitro by using a small interfering RNA or a plasmid, respectively. C57/BL6 male mice (n = 6) received high tidal volume ventilation to establish a lung injury model. Adeno-associated virus transfection of short hairpin RNA and DAPK1 inhibitor repressed DAPK1 expression and activation in lungs, respectively. The primary outcomes were alveolar epithelial cell apoptosis and lung injury. RESULTS: Compared with the control group, the 24-h cyclic stretch group showed significantly higher alveolar epithelial cell apoptotic percentage (45 ± 4% fold vs. 6 ± 1% fold; P < 0.0001) and relative DAPK1 expression, and this group also demonstrated a reduced apoptotic percentage after DAPK1 knockdown (27 ± 5% fold vs. 53 ± 8% fold; P < 0.0001). A promoted apoptotic percentage in DAPK1 overexpression was observed without stretching (49 ± 6% fold vs. 14 ± 3% fold; P < 0.0001). Alterations in B-cell lymphoma 2 and B-cell lymphoma 2-associated X are associated with DAPK1 expression. The mice subjected to high tidal volume had higher DAPK1 expression and alveolar epithelial cell apoptotic percentage in lungs compared with the low tidal volume group (43 ± 6% fold vs. 4 ± 2% fold; P < 0.0001). Inhibition of DAPK1 through adeno-associated virus infection or DAPK1 inhibitor treatment appeared to be protective against lung injury with reduced lung injury score, resolved pulmonary inflammation, and repressed alveolar epithelial cell apoptotic percentage (47 ± 4% fold and 48 ± 6% fold; 35 ± 5% fold and 34 ± 4% fold; P < 0.0001, respectively). CONCLUSIONS: DAPK1 promotes the onset of ventilator-induced lung injury by triggering alveolar epithelial cell apoptosis through intrinsic apoptosis pathway in mice.
Asunto(s)
Células Epiteliales Alveolares/metabolismo , Apoptosis/fisiología , Proteínas Quinasas Asociadas a Muerte Celular/biosíntesis , Lesión Pulmonar Inducida por Ventilación Mecánica/metabolismo , Células Epiteliales Alveolares/patología , Animales , Células Cultivadas , Proteínas Quinasas Asociadas a Muerte Celular/deficiencia , Proteínas Quinasas Asociadas a Muerte Celular/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Lesión Pulmonar Inducida por Ventilación Mecánica/patologíaRESUMEN
BACKGROUND: The global numbers of confirmed cases and deceased critically ill patients with COVID-19 are increasing. However, the clinical course, and the 60-day mortality and its predictors in critically ill patients have not been fully elucidated. The aim of this study is to identify the clinical course, and 60-day mortality and its predictors in critically ill patients with COVID-19. METHODS: Critically ill adult patients admitted to intensive care units (ICUs) from 3 hospitals in Wuhan, China, were included. Data on demographic information, preexisting comorbidities, laboratory findings at ICU admission, treatments, clinical outcomes, and results of SARS-CoV-2 RNA tests and of serum SARS-CoV-2 IgM were collected including the duration between symptom onset and negative conversion of SARS-CoV-2 RNA. RESULTS: Of 1748 patients with COVID-19, 239 (13.7%) critically ill patients were included. Complications included acute respiratory distress syndrome (ARDS) in 164 (68.6%) patients, coagulopathy in 150 (62.7%) patients, acute cardiac injury in 103 (43.1%) patients, and acute kidney injury (AKI) in 119 (49.8%) patients, which occurred 15.5 days, 17 days, 18.5 days, and 19 days after the symptom onset, respectively. The median duration of the negative conversion of SARS-CoV-2 RNA was 30 (range 6-81) days in 49 critically ill survivors that were identified. A total of 147 (61.5%) patients deceased by 60 days after ICU admission. The median duration between ICU admission and decease was 12 (range 3-36). Cox proportional-hazards regression analysis revealed that age older than 65 years, thrombocytopenia at ICU admission, ARDS, and AKI independently predicted the 60-day mortality. CONCLUSIONS: Severe complications are common and the 60-day mortality of critically ill patients with COVID-19 is considerably high. The duration of the negative conversion of SARS-CoV-2 RNA and its association with the severity of critically ill patients with COVID-19 should be seriously considered and further studied.
Asunto(s)
Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/mortalidad , Neumonía Viral/complicaciones , Neumonía Viral/mortalidad , Anciano , COVID-19 , China/epidemiología , Infecciones por Coronavirus/terapia , Enfermedad Crítica , Femenino , Mortalidad Hospitalaria , Humanos , Unidades de Cuidados Intensivos , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/terapia , Estudios Retrospectivos , Factores de RiesgoRESUMEN
BACKGROUND: A COVID-19 outbreak started in Wuhan, China, last December and now has become a global pandemic. The clinical information in caring of critically ill patients with COVID-19 needs to be shared timely, especially under the situations that there is still a largely ongoing spread of COVID-19 in many countries. METHODS: A multicenter prospective observational study investigated all the COVID-19 patients received in 19 ICUs of 16 hospitals in Wuhan, China, over 24 h between 8 AM February 2h and 8 AM February 27, 2020. The demographic information, clinical characteristics, vital signs, complications, laboratory values, and clinical managements of the patients were studied. RESULTS: A total of 226 patients were included. Their median (interquartile range, IQR) age was 64 (57-70) years, and 139 (61.5%) patients were male. The duration from the date of ICU admission to the study date was 11 (5-17) days, and the duration from onset of symptoms to the study date was 31 (24-36) days. Among all the patients, 155 (68.6%) had at least one coexisting disease, and their sequential organ failure assessment score was 4 (2-8). Organ function damages were found in most of the patients: ARDS in 161 (71.2%) patients, septic shock in 34 (15.0%) patients, acute kidney injury occurred in 57 (25.2%) patients, cardiac injury in 61 (27.0%) patients, and lymphocytopenia in 160 (70.8%) patients. Of all the studied patients, 85 (37.6%) received invasive mechanical ventilation, including 14 (6.2%) treated with extracorporeal membrane oxygenation (ECMO) at the same time, 20 (8.8%) received noninvasive mechanical ventilation, and 24 (10.6%) received continuous renal replacement therapy. By April 9, 2020, 87 (38.5%) patients were deceased and 15 (6.7%) were still in the hospital. CONCLUSIONS: Critically ill patients with COVID-19 are associated with a higher risk of severe complications and need to receive an intensive level of treatments. COVID-19 poses a great strain on critical care resources in hospitals. TRIAL REGISTRATION: Chinese Clinical Trial Registry, ChiCTR2000030164. Registered on February 24, 2020, http://www.chictr.org.cn/edit.aspx?pid=49983&htm=4.