Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(19): 4874-4885.e16, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34433011

RESUMEN

Only five species of the once-diverse Rhinocerotidae remain, making the reconstruction of their evolutionary history a challenge to biologists since Darwin. We sequenced genomes from five rhinoceros species (three extinct and two living), which we compared to existing data from the remaining three living species and a range of outgroups. We identify an early divergence between extant African and Eurasian lineages, resolving a key debate regarding the phylogeny of extant rhinoceroses. This early Miocene (∼16 million years ago [mya]) split post-dates the land bridge formation between the Afro-Arabian and Eurasian landmasses. Our analyses also show that while rhinoceros genomes in general exhibit low levels of genome-wide diversity, heterozygosity is lowest and inbreeding is highest in the modern species. These results suggest that while low genetic diversity is a long-term feature of the family, it has been particularly exacerbated recently, likely reflecting recent anthropogenic-driven population declines.


Asunto(s)
Evolución Molecular , Genoma , Perisodáctilos/genética , Animales , Demografía , Flujo Génico , Variación Genética , Geografía , Heterocigoto , Homocigoto , Especificidad del Huésped , Cadenas de Markov , Mutación/genética , Filogenia , Especificidad de la Especie , Factores de Tiempo
2.
Nature ; 631(8022): 819-825, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38843826

RESUMEN

Horses revolutionized human history with fast mobility1. However, the timeline between their domestication and their widespread integration as a means of transport remains contentious2-4. Here we assemble a collection of 475 ancient horse genomes to assess the period when these animals were first reshaped by human agency in Eurasia. We find that reproductive control of the modern domestic lineage emerged around 2200 BCE, through close-kin mating and shortened generation times. Reproductive control emerged following a severe domestication bottleneck starting no earlier than approximately 2700 BCE, and coincided with a sudden expansion across Eurasia that ultimately resulted in the replacement of nearly every local horse lineage. This expansion marked the rise of widespread horse-based mobility in human history, which refutes the commonly held narrative of large horse herds accompanying the massive migration of steppe peoples across Europe around 3000 BCE and earlier3,5. Finally, we detect significantly shortened generation times at Botai around 3500 BCE, a settlement from central Asia associated with corrals and a subsistence economy centred on horses6,7. This supports local horse husbandry before the rise of modern domestic bloodlines.


Asunto(s)
Crianza de Animales Domésticos , Domesticación , Caballos , Transportes , Animales , Femenino , Masculino , Crianza de Animales Domésticos/historia , Asia , Europa (Continente) , Genoma/genética , Historia Antigua , Caballos/clasificación , Caballos/genética , Reproducción , Transportes/historia , Transportes/métodos , Filogenia
3.
Annu Rev Genet ; 55: 633-659, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34555285

RESUMEN

Natural history collections are invaluable repositories of biological information that provide an unrivaled record of Earth's biodiversity. Museum genomics-genomics research using traditional museum and cryogenic collections and the infrastructure supporting these investigations-has particularly enhanced research in ecology and evolutionary biology, the study of extinct organisms, and the impact of anthropogenic activity on biodiversity. However, leveraging genomics in biological collections has exposed challenges, such as digitizing, integrating, and sharing collections data; updating practices to ensure broadly optimal data extraction from existing and new collections; and modernizing collections practices, infrastructure, and policies to ensure fair, sustainable, and genomically manifold uses of museum collections by increasingly diverse stakeholders. Museum genomics collections are poised to address these challenges and, with increasingly sensitive genomics approaches, will catalyze a future era of reproducibility, innovation, and insight made possible through integrating museum and genome sciences.


Asunto(s)
Genómica , Museos , Biodiversidad , Evolución Biológica , Reproducibilidad de los Resultados
4.
Nature ; 591(7849): 265-269, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33597750

RESUMEN

Temporal genomic data hold great potential for studying evolutionary processes such as speciation. However, sampling across speciation events would, in many cases, require genomic time series that stretch well back into the Early Pleistocene subepoch. Although theoretical models suggest that DNA should survive on this timescale1, the oldest genomic data recovered so far are from a horse specimen dated to 780-560 thousand years ago2. Here we report the recovery of genome-wide data from three mammoth specimens dating to the Early and Middle Pleistocene subepochs, two of which are more than one million years old. We find that two distinct mammoth lineages were present in eastern Siberia during the Early Pleistocene. One of these lineages gave rise to the woolly mammoth and the other represents a previously unrecognized lineage that was ancestral to the first mammoths to colonize North America. Our analyses reveal that the Columbian mammoth of North America traces its ancestry to a Middle Pleistocene hybridization between these two lineages, with roughly equal admixture proportions. Finally, we show that the majority of protein-coding changes associated with cold adaptation in woolly mammoths were already present one million years ago. These findings highlight the potential of deep-time palaeogenomics to expand our understanding of speciation and long-term adaptive evolution.


Asunto(s)
ADN Antiguo/análisis , Evolución Molecular , Genoma Mitocondrial/genética , Genómica , Mamuts/genética , Filogenia , Aclimatación/genética , Alelos , Animales , Teorema de Bayes , ADN Antiguo/aislamiento & purificación , Elefantes/genética , Europa (Continente) , Femenino , Fósiles , Variación Genética/genética , Cadenas de Markov , Diente Molar , América del Norte , Datación Radiométrica , Siberia , Factores de Tiempo
5.
Nature ; 598(7882): 634-640, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34671162

RESUMEN

Domestication of horses fundamentally transformed long-range mobility and warfare1. However, modern domesticated breeds do not descend from the earliest domestic horse lineage associated with archaeological evidence of bridling, milking and corralling2-4 at Botai, Central Asia around 3500 BC3. Other longstanding candidate regions for horse domestication, such as Iberia5 and Anatolia6, have also recently been challenged. Thus, the genetic, geographic and temporal origins of modern domestic horses have remained unknown. Here we pinpoint the Western Eurasian steppes, especially the lower Volga-Don region, as the homeland of modern domestic horses. Furthermore, we map the population changes accompanying domestication from 273 ancient horse genomes. This reveals that modern domestic horses ultimately replaced almost all other local populations as they expanded rapidly across Eurasia from about 2000 BC, synchronously with equestrian material culture, including Sintashta spoke-wheeled chariots. We find that equestrianism involved strong selection for critical locomotor and behavioural adaptations at the GSDMC and ZFPM1 genes. Our results reject the commonly held association7 between horseback riding and the massive expansion of Yamnaya steppe pastoralists into Europe around 3000 BC8,9 driving the spread of Indo-European languages10. This contrasts with the scenario in Asia where Indo-Iranian languages, chariots and horses spread together, following the early second millennium BC Sintashta culture11,12.


Asunto(s)
Domesticación , Genética de Población , Caballos , Animales , Arqueología , Asia , ADN Antiguo , Europa (Continente) , Genoma , Pradera , Caballos/genética , Filogenia
6.
Nature ; 591(7848): 87-91, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33442059

RESUMEN

Dire wolves are considered to be one of the most common and widespread large carnivores in Pleistocene America1, yet relatively little is known about their evolution or extinction. Here, to reconstruct the evolutionary history of dire wolves, we sequenced five genomes from sub-fossil remains dating from 13,000 to more than 50,000 years ago. Our results indicate that although they were similar morphologically to the extant grey wolf, dire wolves were a highly divergent lineage that split from living canids around 5.7 million years ago. In contrast to numerous examples of hybridization across Canidae2,3, there is no evidence for gene flow between dire wolves and either North American grey wolves or coyotes. This suggests that dire wolves evolved in isolation from the Pleistocene ancestors of these species. Our results also support an early New World origin of dire wolves, while the ancestors of grey wolves, coyotes and dholes evolved in Eurasia and colonized North America only relatively recently.


Asunto(s)
Extinción Biológica , Filogenia , Lobos/clasificación , Animales , Fósiles , Flujo Génico , Genoma/genética , Genómica , Mapeo Geográfico , América del Norte , Paleontología , Fenotipo , Lobos/genética
7.
Bioinformatics ; 40(7)2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960861

RESUMEN

MOTIVATION: The alignment of sequencing reads is a critical step in the characterization of ancient genomes. However, reference bias and spurious mappings pose a significant challenge, particularly as cutting-edge wet lab methods generate datasets that push the boundaries of alignment tools. Reference bias occurs when reference alleles are favoured over alternative alleles during mapping, whereas spurious mappings stem from either contamination or when endogenous reads fail to align to their correct position. Previous work has shown that these phenomena are correlated with read length but a more thorough investigation of reference bias and spurious mappings for ancient DNA has been lacking. Here, we use a range of empirical and simulated palaeogenomic datasets to investigate the impacts of mapping tools, quality thresholds, and reference genome on mismatch rates across read lengths. RESULTS: For these analyses, we introduce AMBER, a new bioinformatics tool for assessing the quality of ancient DNA mapping directly from BAM-files and informing on reference bias, read length cut-offs and reference selection. AMBER rapidly and simultaneously computes the sequence read mapping bias in the form of the mismatch rates per read length, cytosine deamination profiles at both CpG and non-CpG sites, fragment length distributions, and genomic breadth and depth of coverage. Using AMBER, we find that mapping algorithms and quality threshold choices dictate reference bias and rates of spurious alignment at different read lengths in a predictable manner, suggesting that optimized mapping parameters for each read length will be a key step in alleviating reference bias and spurious mappings. AVAILABILITY AND IMPLEMENTATION: AMBER is available for noncommercial use on GitHub (https://github.com/tvandervalk/AMBER.git). Scripts used to generate and analyse simulated datasets are available on Github (https://github.com/sdolenz/refbias_scripts).


Asunto(s)
ADN Antiguo , Análisis de Secuencia de ADN , ADN Antiguo/análisis , Humanos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Animales , Alineación de Secuencia/métodos , Biología Computacional/métodos , Algoritmos
8.
Nature ; 574(7776): 103-107, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31511700

RESUMEN

The sequencing of ancient DNA has enabled the reconstruction of speciation, migration and admixture events for extinct taxa1. However, the irreversible post-mortem degradation2 of ancient DNA has so far limited its recovery-outside permafrost areas-to specimens that are not older than approximately 0.5 million years (Myr)3. By contrast, tandem mass spectrometry has enabled the sequencing of approximately 1.5-Myr-old collagen type I4, and suggested the presence of protein residues in fossils of the Cretaceous period5-although with limited phylogenetic use6. In the absence of molecular evidence, the speciation of several extinct species of the Early and Middle Pleistocene epoch remains contentious. Here we address the phylogenetic relationships of the Eurasian Rhinocerotidae of the Pleistocene epoch7-9, using the proteome of dental enamel from a Stephanorhinus tooth that is approximately 1.77-Myr old, recovered from the archaeological site of Dmanisi (South Caucasus, Georgia)10. Molecular phylogenetic analyses place this Stephanorhinus as a sister group to the clade formed by the woolly rhinoceros (Coelodonta antiquitatis) and Merck's rhinoceros (Stephanorhinus kirchbergensis). We show that Coelodonta evolved from an early Stephanorhinus lineage, and that this latter genus includes at least two distinct evolutionary lines. The genus Stephanorhinus is therefore currently paraphyletic, and its systematic revision is needed. We demonstrate that sequencing the proteome of Early Pleistocene dental enamel overcomes the limitations of phylogenetic inference based on ancient collagen or DNA. Our approach also provides additional information about the sex and taxonomic assignment of other specimens from Dmanisi. Our findings reveal that proteomic investigation of ancient dental enamel-which is the hardest tissue in vertebrates11, and is highly abundant in the fossil record-can push the reconstruction of molecular evolution further back into the Early Pleistocene epoch, beyond the currently known limits of ancient DNA preservation.


Asunto(s)
ADN Antiguo/análisis , Esmalte Dental/metabolismo , Fósiles , Perisodáctilos/clasificación , Perisodáctilos/genética , Filogenia , Proteoma/genética , Proteómica , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Teorema de Bayes , Historia Antigua , Humanos , Masculino , Perisodáctilos/metabolismo , Fosforilación/genética , Proteoma/análisis
9.
Nucleic Acids Res ; 51(13): e69, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37260085

RESUMEN

Hybridization capture approaches allow targeted high-throughput sequencing analysis at reduced costs compared to shotgun sequencing. Hybridization capture is particularly useful in analyses of genomic data from ancient, environmental, and forensic samples, where target content is low, DNA is fragmented and multiplex PCR or other targeted approaches often fail. Here, we describe a DNA bait synthesis approach for hybridization capture that we call Circular Nucleic acid Enrichment Reagent, or CNER (pronounced 'snare'). The CNER method uses rolling-circle amplification followed by restriction digestion to discretize microgram quantities of hybridization probes. We demonstrate the utility of the CNER method by generating probes for a panel of 23 771 known sites of single nucleotide polymorphism in the horse genome. Using these probes, we capture and sequence from a panel of ten ancient horse DNA libraries, comparing CNER capture efficiency to a commercially available approach. With about one million read pairs per sample, CNERs captured more targets (90.5% versus 66.5%) at greater mean depth than an alternative commercial approach.


Asunto(s)
ADN , Genómica , Animales , Caballos/genética , ADN/genética , Análisis de Secuencia de ADN/métodos , Hibridación de Ácido Nucleico/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
10.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35042801

RESUMEN

Life on Earth has evolved from initial simplicity to the astounding complexity we experience today. Bacteria and archaea have largely excelled in metabolic diversification, but eukaryotes additionally display abundant morphological innovation. How have these innovations come about and what constraints are there on the origins of novelty and the continuing maintenance of biodiversity on Earth? The history of life and the code for the working parts of cells and systems are written in the genome. The Earth BioGenome Project has proposed that the genomes of all extant, named eukaryotes-about 2 million species-should be sequenced to high quality to produce a digital library of life on Earth, beginning with strategic phylogenetic, ecological, and high-impact priorities. Here we discuss why we should sequence all eukaryotic species, not just a representative few scattered across the many branches of the tree of life. We suggest that many questions of evolutionary and ecological significance will only be addressable when whole-genome data representing divergences at all of the branchings in the tree of life or all species in natural ecosystems are available. We envisage that a genomic tree of life will foster understanding of the ongoing processes of speciation, adaptation, and organismal dependencies within entire ecosystems. These explorations will resolve long-standing problems in phylogenetics, evolution, ecology, conservation, agriculture, bioindustry, and medicine.


Asunto(s)
Secuencia de Bases/genética , Eucariontes/genética , Genómica/ética , Animales , Biodiversidad , Evolución Biológica , Ecología , Ecosistema , Genoma , Genómica/métodos , Humanos , Filogenia
11.
Mol Ecol ; : e17362, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38682494

RESUMEN

The black abalone, Haliotis cracherodii, is a large, long-lived marine mollusc that inhabits rocky intertidal habitats along the coast of California and Mexico. In 1985, populations were impacted by a bacterial disease known as withering syndrome (WS) that wiped out >90% of individuals, leading to the closure of all U.S. black abalone fisheries since 1993. Current conservation strategies include restoring diminished populations by translocating healthy individuals. However, population collapse on this scale may have dramatically lowered genetic diversity and strengthened geographic differentiation, making translocation-based recovery contentious. Additionally, the current prevalence of WS remains unknown. To address these uncertainties, we sequenced and analysed the genomes of 133 black abalone individuals from across their present range. We observed no spatial genetic structure among black abalone, with the exception of a single chromosomal inversion that increases in frequency with latitude. Outside the inversion, genetic differentiation between sites is minimal and does not scale with either geographic distance or environmental dissimilarity. Genetic diversity appears uniformly high across the range. Demographic inference does indicate a severe population bottleneck beginning just 15 generations in the past, but this decline is short lived, with present-day size far exceeding the pre-bottleneck status quo. Finally, we find the bacterial agent of WS is equally present across the sampled range, but only in 10% of individuals. The lack of population genetic structure, uniform diversity and prevalence of WS bacteria indicates that translocation could be a valid and low-risk means of population restoration for black abalone species' recovery.

12.
Mol Ecol ; 33(19): e17527, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39279684

RESUMEN

The extremely rich palaeontological record of the horse family, also known as equids, has provided many examples of macroevolutionary change over the last ~55 Mya. This family is also one of the most documented at the palaeogenomic level, with hundreds of ancient genomes sequenced. While these data have advanced understanding of the domestication history of horses and donkeys, the palaeogenomic record of other equids remains limited. In this study, we have generated genome-wide data for 25 ancient equid specimens spanning over 44 Ky and spread across Anatolia, the Caucasus, Central Asia and Mongolia. Our dataset includes the genomes from two extinct species, the European wild ass, Equus hydruntinus, and the sussemione Equus ovodovi. We document, for the first time, the presence of sussemiones in Mongolia and their survival around ~3.9 Kya, a finding that should be considered when discussing the timing of the first arrival of the domestic horse in the region. We also identify strong spatial differentiation within the historical ecological range of Asian wild asses, Equus hemionus, and incomplete reproductive isolation in several groups yet considered as different species. Finally, we find common selection signatures at ANTXR2 gene in European, Asian and African wild asses. This locus, which encodes a receptor for bacterial toxins, shows no selection signal in E. ovodovi, but a 5.4-kb deletion within intron 7. Whether such genetic modifications played any role in the sussemione extinction remains unknown.


Asunto(s)
Equidae , Genética de Población , Animales , Equidae/genética , Mongolia , Genoma/genética , Filogenia , Fósiles , Caballos/genética , Adaptación Fisiológica/genética
13.
J Hered ; 115(4): 424-431, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38150503

RESUMEN

The jaguar (Panthera onca) is the largest living cat species native to the Americas and one of few large American carnivorans to have survived into the Holocene. However, the extent to which jaguar diversity declined during the end-Pleistocene extinction event remains unclear. For example, Pleistocene jaguar fossils from North America are notably larger than the average extant jaguar, leading to hypotheses that jaguars from this continent represent a now-extinct subspecies (Panthera onca augusta) or species (Panthera augusta). Here, we used a hybridization capture approach to recover an ancient mitochondrial genome from a large, late Pleistocene jaguar from Kingston Saltpeter Cave, Georgia, United States, which we sequenced to 26-fold coverage. We then estimated the evolutionary relationship between the ancient jaguar mitogenome and those from other extinct and living large felids, including multiple jaguars sampled across the species' current range. The ancient mitogenome falls within the diversity of living jaguars. All sampled jaguar mitogenomes share a common mitochondrial ancestor ~400 thousand years ago, indicating that the lineage represented by the ancient specimen dispersed into North America from the south at least once during the late Pleistocene. While genomic data from additional and older specimens will continue to improve understanding of Pleistocene jaguar diversity in the Americas, our results suggest that this specimen falls within the variation of extant jaguars despite the relatively larger size and geographic location and does not represent a distinct taxon.


Asunto(s)
Fósiles , Genoma Mitocondrial , Panthera , Filogenia , Animales , Panthera/genética , Panthera/clasificación , Análisis de Secuencia de ADN , ADN Mitocondrial/genética , América del Norte , Georgia , Evolución Molecular , Variación Genética
14.
J Hered ; 115(2): 212-220, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38245832

RESUMEN

The dugong (Dugong dugon) is a marine mammal widely distributed throughout the Indo-Pacific and the Red Sea, with a Vulnerable conservation status, and little is known about many of the more peripheral populations, some of which are thought to be close to extinction. We present a de novo high-quality genome assembly for the dugong from an individual belonging to the well-monitored Moreton Bay population in Queensland, Australia. Our assembly uses long-read PacBio HiFi sequencing and Omni-C data following the Vertebrate Genome Project pipeline to reach chromosome-level contiguity (24 chromosome-level scaffolds; 3.16 Gbp) and high completeness (97.9% complete BUSCOs). We observed relatively high genome-wide heterozygosity, which likely reflects historical population abundance before the last interglacial period, approximately 125,000 yr ago. Demographic inference suggests that dugong populations began declining as sea levels fell after the last interglacial period, likely a result of population fragmentation and habitat loss due to the exposure of seagrass meadows. We find no evidence for ongoing recent inbreeding in this individual. However, runs of homozygosity indicate some past inbreeding. Our draft genome assembly will enable range-wide assessments of genetic diversity and adaptation, facilitate effective management of dugong populations, and allow comparative genomics analyses including with other sirenians, the oldest marine mammal lineage.


Asunto(s)
Caniformia , Dugong , Animales , Australia , Ecosistema , Océano Índico , Cetáceos , Cromosomas
15.
J Hered ; 115(5): 498-506, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39008331

RESUMEN

The American black bear, Ursus americanus, is a widespread and ecologically important species in North America. In California, the black bear plays an important role in a variety of ecosystems and serves as an important species for recreational hunting. While research suggests that the populations in California are currently healthy, continued monitoring is critical, with genomic analyses providing an important surveillance tool. Here we report a high-quality, near chromosome-level genome assembly from a U. americanus sample from California. The primary assembly has a total length of 2.5 Gb contained in 316 scaffolds, a contig N50 of 58.9 Mb, a scaffold N50 of 67.6 Mb, and a BUSCO completeness score of 96%. This U. americanus genome assembly will provide an important resource for the targeted management of black bear populations in California, with the goal of achieving an appropriate balance between the recreational value of black bears and the maintenance of viable populations. The high quality of this genome assembly will also make it a valuable resource for comparative genomic analyses among black bear populations and among bear species.


Asunto(s)
Genoma , Ursidae , Ursidae/genética , Animales , California , Genómica/métodos
16.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33723011

RESUMEN

Summer warming is driving a greening trend across the Arctic, with the potential for large-scale amplification of climate change due to vegetation-related feedbacks [Pearson et al., Nat. Clim. Chang. (3), 673-677 (2013)]. Because observational records are sparse and temporally limited, past episodes of Arctic warming can help elucidate the magnitude of vegetation response to temperature change. The Last Interglacial ([LIG], 129,000 to 116,000 y ago) was the most recent episode of Arctic warming on par with predicted 21st century temperature change [Otto-Bliesner et al., Philos. Trans. A Math. Phys. Eng. Sci. (371), 20130097 (2013) and Post et al., SciAdv (5), eaaw9883 (2019)]. However, high-latitude terrestrial records from this period are rare, so LIG vegetation distributions are incompletely known. Pollen-based vegetation reconstructions can be biased by long-distance pollen transport, further obscuring the paleoenvironmental record. Here, we present a LIG vegetation record based on ancient DNA in lake sediment and compare it with fossil pollen. Comprehensive plant community reconstructions through the last and current interglacial (the Holocene) on Baffin Island, Arctic Canada, reveal coherent climate-driven community shifts across both interglacials. Peak LIG warmth featured a ∼400-km northward range shift of dwarf birch, a key woody shrub that is again expanding northward. Greening of the High Arctic-documented here by multiple proxies-likely represented a strong positive feedback on high-latitude LIG warming. Authenticated ancient DNA from this lake sediment also extends the useful preservation window for the technique and highlights the utility of combining traditional and molecular approaches for gleaning paleoenvironmental insights to better anticipate a warmer future.


Asunto(s)
Cambio Climático , ADN Antiguo/análisis , ADN de Plantas/análisis , Dispersión de las Plantas , Polen/genética , Regiones Árticas , Fósiles , Sedimentos Geológicos/análisis , Lagos , Paleontología
17.
J Hered ; 114(1): 44-51, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36099176

RESUMEN

The tricolored blackbird, Agelaius tricolor, is a gregarious species that forms enormous breeding and foraging colonies in wetland and agricultural habitats, primarily in California, USA. Once extremely abundant, species numbers have declined dramatically in the past century, largely due to losses of breeding and foraging habitats. Tricolored blackbirds are currently listed as Endangered by the IUCN, and Threatened under the California Endangered Species Act. Increased genetic information is needed to detail the evolutionary consequences of a species-wide bottleneck and inform conservation management. Here, we present a contiguous tricolored blackbird reference genome, assembled with PacBio HiFi long reads and Dovetail Omni-C data to generate a scaffold-level assembly containing multiple chromosome-length scaffolds. This genome adds a valuable resource for important evolutionary and conservation research on tricolored blackbirds and related species.


Asunto(s)
Genoma , Pájaros Cantores , Pájaros Cantores/genética , Animales , Conservación de los Recursos Naturales
18.
J Hered ; 113(6): 665-672, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-35567593

RESUMEN

The once abundant black abalone, Haliotis cracherodii, is a large, long-lived grazing marine mollusk that inhabits the rocky intertidal along the coast of California. The species has experienced dramatic declines since the mid-1980s largely due to the fatal bacterial disease called withering syndrome, leading to the collapse of an economically important fishery and to its inclusion into the IUCN listing as a critically endangered species. In some places impacted by the disease, populations of black abalone have declined by more than 90%, prompting population crashes associated with very little recruitment of new individuals and changes to intertidal communities. Habitats that were dominated by crustose coralline algae and bare rock have become dominated instead by fleshy algae and sessile invertebrates. Here, we present the first high-quality black abalone reference genome, assembled with PacBio HiFi long-reads and assembled with Dovetail Omni-C data to generate a scaffold-level assembly. The black abalone reference genome will be an essential resource in understanding the evolutionary history of this species as well as for exploring its current levels of genetic diversity and establishing future management and restoration plans.


Asunto(s)
Gastrópodos , Humanos , Animales , Gastrópodos/genética , Especies en Peligro de Extinción , Explotaciones Pesqueras , Ecosistema
19.
J Hered ; 113(6): 589-596, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36136001

RESUMEN

Conservation science and environmental regulation are sibling constructs of the latter half of the 20th century, part of a more general awakening to humanity's effect on the natural world in the wake of 2 world wars. Efforts to understand the evolution of biodiversity using the models of population genetics and the data derived from DNA sequencing, paired with legal and political mandates to protect biodiversity through novel laws, regulations, and conventions arose concurrently. The extremely rapid rate of development of new molecular tools to document and compare genetic identities, and the global goal of prioritizing species and habitats for protection are separate enterprises that have benefited from each other, ultimately leading to improved outcomes for each. In this article, we explore how the California Conservation Genomics Project has, and should, contribute to ongoing and future conservation implementation, and how it serves as a model for other geopolitical regions and taxon-oriented conservation efforts. One of our primary conclusions is that conservation genomics can now be applied, at scale, to inform decision-makers and identify regions and their contained species that are most resilient, and most in need of conservation interventions.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Genómica , Genética de Población , Políticas
20.
J Hered ; 113(6): 577-588, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-35395669

RESUMEN

The California Conservation Genomics Project (CCGP) is a unique, critically important step forward in the use of comprehensive landscape genetic data to modernize natural resource management at a regional scale. We describe the CCGP, including all aspects of project administration, data collection, current progress, and future challenges. The CCGP will generate, analyze, and curate a single high-quality reference genome and 100-150 resequenced genomes for each of 153 species projects (representing 235 individual species) that span the ecological and phylogenetic breadth of California's marine, freshwater, and terrestrial ecosystems. The resulting portfolio of roughly 20 000 resequenced genomes will be analyzed with identical informatic and landscape genomic pipelines, providing a comprehensive overview of hotspots of within-species genomic diversity, potential and realized corridors connecting these hotspots, regions of reduced diversity requiring genetic rescue, and the distribution of variation critical for rapid climate adaptation. After 2 years of concerted effort, full funding ($12M USD) has been secured, species identified, and funds distributed to 68 laboratories and 114 investigators drawn from all 10 University of California campuses. The remaining phases of the CCGP include completion of data collection and analyses, and delivery of the resulting genomic data and inferences to state and federal regulatory agencies to help stabilize species declines. The aspirational goals of the CCGP are to identify geographic regions that are critical to long-term preservation of California biodiversity, prioritize those regions based on defensible genomic criteria, and provide foundational knowledge that informs management strategies at both the individual species and ecosystem levels.


Asunto(s)
Biodiversidad , Ecosistema , Filogenia , Genómica , Agua Dulce , California , Conservación de los Recursos Naturales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA