Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Mol Biol Rep ; 49(12): 11443-11467, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36002653

RESUMEN

Crop plants are prone to several yield-reducing biotic and abiotic stresses. The crop yield reductions due to these stresses need addressing to maintain an adequate balance between the increasing world population and food production to avoid food scarcities in the future. It is impossible to increase the area under food crops proportionately to meet the rising food demand. In such an adverse scenario overcoming the biotic and abiotic stresses through biotechnological interventions may serve as a boon to help meet the globe's food requirements. Under the current genomic era, the wide availability of genomic resources and genome editing technologies such as Transcription Activator-Like Effector Nucleases (TALENs), Zinc Finger Nucleases (ZFNs), and Clustered-Regularly Interspaced Palindromic Repeats/CRISPR-associated proteins (CRISPR/Cas) has widened the scope of overcoming these stresses for several food crops. These techniques have made gene editing more manageable and accessible with changes at the embryo level by adding or deleting DNA sequences of the target gene(s) from the genome. The CRISPR construct consists of a single guide RNA having complementarity with the nucleotide fragments of the target gene sequence, accompanied by a protospacer adjacent motif. The target sequence in the organism's genome is then cleaved by the Cas9 endonuclease for obtaining a desired trait of interest. The current review describes the components, mechanisms, and types of CRISPR/Cas techniques and how this technology has helped to functionally characterize genes associated with various biotic and abiotic stresses in a target organism. This review also summarizes the application of CRISPR/Cas technology targeting these stresses in crops through knocking down/out of associated genes.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , Plantas Modificadas Genéticamente/genética , Genoma de Planta/genética , Productos Agrícolas/genética , Estrés Fisiológico/genética
2.
Microorganisms ; 12(7)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39065266

RESUMEN

Outbreaks of Enterohemorrhagic Escherichia coli (EHEC), Salmonella enterica, and Listeria monocytogenes linked to fresh produce consumption pose significant food safety concerns. These pathogens can contaminate pre-harvest produce through various routes, including contaminated water. Soil physicochemical properties and flooding can influence pathogen survival in soils. We investigated survival of EHEC, S. enterica, and L. monocytogenes in soil extracts designed to represent soils with stagnant water. We hypothesized pathogen survival would be influenced by soil extract nutrient levels and the presence of native microbes. A chemical analysis revealed higher levels of total nitrogen, phosphorus, and carbon in high-nutrient soil extracts compared to low-nutrient extracts. Pathogen survival was enhanced in high-nutrient, sterile soil extracts, while the presence of native microbes reduced pathogen numbers. A microbiome analysis showed greater diversity in low-nutrient soil extracts, with distinct microbial compositions between extract types. Our findings highlight the importance of soil nutrient composition and microbial dynamics in influencing pathogen behavior. Given key soil parameters, a long short-term memory model (LSTM) effectively predicted pathogen survival. Integrating these factors can aid in developing predictive models for pathogen persistence in agricultural systems. Overall, our study contributes to understanding the complex interplay in agricultural ecosystems, facilitating informed decision-making for crop production and food safety enhancement.

3.
Polymers (Basel) ; 16(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38891434

RESUMEN

In this study, a solid masterbatch of starch-iodine complex with 6.7 wt.% iodine was prepared in pellet form using a ZSK-30 twin-screw extruder. Thermogravimetric (TGA) and isothermal TGA analysis of the pellets revealed that there was no significant loss of iodine due to sublimation during reactive extrusion. These solid pellets demonstrated antifungal properties when applied to strawberries via dip coating in an aqueous solution, extending their shelf life from two days to eight days, thereby reducing fungal growth and visual decay. Furthermore, the solid pellets displayed antibacterial activity against E. coli, as evidenced by the clear zone of inhibition observed in the Kirby-Bauer test. To enhance practical application, these pellets were further blended with PLA-PBAT film formulations at 10 and 18% by wt. to make blown films with effective iodine loadings of 0.7 and 1.3% by wt. These films showed superior antibacterial activity against E. coli compared with PLA control films and the commercial silver antimicrobial-containing films during direct inoculation tests as per ISO 22196. Tensile strength and elongation at break in machine direction (MD) for the starch-iodine-containing blown films were comparable to the control films in MD, but tensile strength was reduced to 37-40% in the transverse direction (TD). This was due to a non-uniform dispersion of the starch-iodine complex in the films, as confirmed by the visual and SEM analyses. Thus, this study illustrates the practical utility of the solid starch-iodine complex as a safe and efficient means of introducing iodine into an environment, mitigating the typical hazards associated with handling solid iodine.

4.
Artículo en Inglés | MEDLINE | ID: mdl-22750336

RESUMEN

A systematic investigation on nonlinear optical properties such as three photon absorption (3PA) wavelength dependent of Kerr type nonlinear refraction in direct and indirect band gap crystals has been reported in the present work. The Z-scan measurements are recorded for both ZnO and CdI(2) with femtosecond laser pulses while the wavelength dependent of the Kerr nonlinearity are in agreement with a two band model. The wavelength dependence of the 3PA is determined by [(3E(photon)/E(g))-1](5/2)[(3E(photon)/E(g))](-9) in the case of direct band gap crystal and [(3E(photon)±â„Ω/E(g))-1](5/2)[(3E(photon)±â„Ω/E(g))](-9) in the case of indirect band gap crystal. In the present investigation the value of 3PA in the case of indirect band gap crystal is lower than the direct band gap crystal which is due to the phonon assisted transition. The materials of large band gap with optical nonlinearity and fast response speed should be dominating factor for further photonic devices such as optical limiters, optical switches and optical modulators. The higher order nonlinear optical effects have also been determined in the present study.


Asunto(s)
Dinámicas no Lineales , Fenómenos Ópticos , Refractometría/métodos , Absorción , Cristalografía por Rayos X , Fotones , Óxido de Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA