RESUMEN
To define the multi-cellular epigenomic and transcriptional landscape of cardiac cellular development, we generated single-cell chromatin accessibility maps of human fetal heart tissues. We identified eight major differentiation trajectories involving primary cardiac cell types, each associated with dynamic transcription factor (TF) activity signatures. We contrasted regulatory landscapes of iPSC-derived cardiac cell types and their in vivo counterparts, which enabled optimization of in vitro differentiation of epicardial cells. Further, we interpreted sequence based deep learning models of cell-type-resolved chromatin accessibility profiles to decipher underlying TF motif lexicons. De novo mutations predicted to affect chromatin accessibility in arterial endothelium were enriched in congenital heart disease (CHD) cases vs. controls. In vitro studies in iPSCs validated the functional impact of identified variation on the predicted developmental cell types. This work thus defines the cell-type-resolved cis-regulatory sequence determinants of heart development and identifies disruption of cell type-specific regulatory elements in CHD.
Asunto(s)
Cromatina , Cardiopatías Congénitas , Humanos , Cromatina/genética , Cardiopatías Congénitas/genética , Corazón , Mutación , Análisis de la Célula IndividualRESUMEN
Genetic perturbations of cortical development can lead to neurodevelopmental disease, including autism spectrum disorder (ASD). To identify genomic regions crucial to corticogenesis, we mapped the activity of gene-regulatory elements generating a single-cell atlas of gene expression and chromatin accessibility both independently and jointly. This revealed waves of gene regulation by key transcription factors (TFs) across a nearly continuous differentiation trajectory, distinguished the expression programs of glial lineages, and identified lineage-determining TFs that exhibited strong correlation between linked gene-regulatory elements and expression levels. These highly connected genes adopted an active chromatin state in early differentiating cells, consistent with lineage commitment. Base-pair-resolution neural network models identified strong cell-type-specific enrichment of noncoding mutations predicted to be disruptive in a cohort of ASD individuals and identified frequently disrupted TF binding sites. This approach illustrates how cell-type-specific mapping can provide insights into the programs governing human development and disease.
Asunto(s)
Corteza Cerebral/embriología , Cromatina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Análisis de la Célula Individual , Astrocitos/citología , Diferenciación Celular , Linaje de la Célula/genética , Análisis por Conglomerados , Aprendizaje Profundo , Epigénesis Genética , Lógica Difusa , Glutamatos/metabolismo , Humanos , Mutación/genética , Neuronas/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genéticaRESUMEN
ABSTRACT: We investigated efficacy and safety of mavorixafor, an oral CXCR4 antagonist, in participants with warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome, a rare immunodeficiency caused by CXCR4 gain-of-function variants. This randomized (1:1), double-blind, placebo-controlled, phase 3 trial enrolled participants aged ≥12 years with WHIM syndrome and absolute neutrophil count (ANC) ≤0.4 × 103/µL. Participants received once-daily mavorixafor or placebo for 52 weeks. The primary end point was time (hours) above ANC threshold ≥0.5 × 103/µL (TATANC; over 24 hours). Secondary end points included TAT absolute lymphocyte count ≥1.0 × 103/µL (TATALC; over 24 hours); absolute changes in white blood cell (WBC), ANC, and absolute lymphocyte count (ALC) from baseline; annualized infection rate; infection duration; and total infection score (combined infection number/severity). In 31 participants (mavorixafor, n = 14; placebo, n = 17), mavorixafor least squares (LS) mean TATANC was 15.0 hours and 2.8 hours for placebo (P < .001). Mavorixafor LS mean TATALC was 15.8 hours and 4.6 hours for placebo (P < .001). Annualized infection rates were 60% lower with mavorixafor vs placebo (LS mean 1.7 vs 4.2; nominal P = .007), and total infection scores were 40% lower (7.4 [95% confidence interval [CI], 1.6-13.2] vs 12.3 [95% CI, 7.2-17.3]). Treatment with mavorixafor reduced infection frequency, severity, duration, and antibiotic use. No discontinuations occurred due to treatment-emergent adverse events (TEAEs); no related serious TEAEs were observed. Overall, mavorixafor treatment demonstrated significant increases in LS mean TATANC and TATALC, reduced infection frequency, severity/duration, and was well tolerated. The trial was registered at www.clinicaltrials.gov as #NCT03995108.
Asunto(s)
Síndromes de Inmunodeficiencia , Enfermedades de Inmunodeficiencia Primaria , Receptores CXCR4 , Verrugas , Humanos , Femenino , Receptores CXCR4/antagonistas & inhibidores , Masculino , Enfermedades de Inmunodeficiencia Primaria/tratamiento farmacológico , Verrugas/tratamiento farmacológico , Método Doble Ciego , Adulto , Persona de Mediana Edad , Síndromes de Inmunodeficiencia/tratamiento farmacológico , Quinolinas/efectos adversos , Quinolinas/administración & dosificación , Quinolinas/uso terapéutico , Adolescente , Adulto Joven , Niño , Recuento de Linfocitos , Aminoquinolinas , Bencimidazoles , ButilaminasRESUMEN
ABSTRACT: Mutations in the small Rho-family guanosine triphosphate hydrolase RAC2, critical for actin cytoskeleton remodeling and intracellular signal transduction, are associated with neonatal severe combined immunodeficiency (SCID), infantile neutrophilic disorder resembling leukocyte adhesion deficiency (LAD), and later-onset combined immune deficiency (CID). We investigated 54 patients (23 previously reported) from 37 families yielding 15 novel RAC2 missense mutations, including one present only in homozygosity. Data were collected from referring physicians and literature reports with updated clinical information. Patients were grouped by presentation: neonatal SCID (n = 5), infantile LAD-like disease (n = 5), or CID (n = 44). Disease correlated to RAC2 activity: constitutively active RAS-like mutations caused neonatal SCID, dominant-negative mutations caused LAD-like disease, whereas dominant-activating mutations caused CID. Significant T- and B-lymphopenia with low immunoglobulins were seen in most patients; myeloid abnormalities included neutropenia, altered oxidative burst, impaired neutrophil migration, and visible neutrophil macropinosomes. Among 42 patients with CID with clinical data, upper and lower respiratory infections and viral infections were common. Twenty-three distinct RAC2 mutations, including 15 novel variants, were identified. Using heterologous expression systems, we assessed downstream effector functions including superoxide production, p21-activated kinase 1 binding, AKT activation, and protein stability. Confocal microscopy showed altered actin assembly evidenced by membrane ruffling and macropinosomes. Altered protein localization and aggregation were observed. All tested RAC2 mutant proteins exhibited aberrant function; no single assay was sufficient to determine functional consequence. Most mutants produced elevated superoxide; mutations unable to support superoxide formation were associated with bacterial infections. RAC2 mutations cause a spectrum of immune dysfunction, ranging from early onset SCID to later-onset combined immunodeficiencies depending on RAC2 activity. This trial was registered at www.clinicaltrials.gov as #NCT00001355 and #NCT00001467.
Asunto(s)
Síndromes de Inmunodeficiencia , Síndrome de Deficiencia de Adhesión del Leucocito , Enfermedades de Inmunodeficiencia Primaria , Inmunodeficiencia Combinada Grave , Humanos , Recién Nacido , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/metabolismo , Neutrófilos/metabolismo , Enfermedades de Inmunodeficiencia Primaria/genética , Enfermedades de Inmunodeficiencia Primaria/metabolismo , Proteínas de Unión al GTP rac/genética , Proteínas de Unión al GTP rac/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteína RCA2 de Unión a GTP , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/metabolismo , Superóxidos/metabolismoRESUMEN
ABSTRACT: Wiskott-Aldrich syndrome (WAS) is a multifaceted monogenic disorder with a broad disease spectrum and variable disease severity and a variety of treatment options including allogeneic hematopoietic stem cell transplantation (HSCT) and gene therapy (GT). No reliable biomarker exists to predict disease course and outcome for individual patients. A total of 577 patients with a WAS variant from 26 countries and a median follow-up of 8.9 years (range, 0.3-71.1), totaling 6118 patient-years, were included in this international retrospective study. Overall survival (OS) of the cohort (censored at HSCT or GT) was 82% (95% confidence interval, 78-87) at age 15 years and 70% (61-80) at 30 years. The type of variant was predictive of outcome: patients with a missense variant in exons 1 or 2 or with the intronic hot spot variant c.559+5G>A (class I variants) had a 15-year OS of 93% (89-98) and a 30-year OS of 91% (86-97), compared with 71% (62-81) and 48% (34-68) in patients with any other variant (class II; P < .0001). The cumulative incidence rates of disease-related complications such as severe bleeding (P = .007), life-threatening infection (P < .0001), and autoimmunity (P = .004) occurred significantly later in patients with a class I variant. The cumulative incidence of malignancy (P = .6) was not different between classes I and II. It confirms the spectrum of disease severity and quantifies the risk for specific disease-related complications. The class of the variant is a biomarker to predict the outcome for patients with WAS.
Asunto(s)
Genotipo , Síndrome de Wiskott-Aldrich , Humanos , Adolescente , Niño , Masculino , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/diagnóstico , Síndrome de Wiskott-Aldrich/terapia , Femenino , Preescolar , Adulto , Estudios Retrospectivos , Lactante , Adulto Joven , Biomarcadores , Trasplante de Células Madre Hematopoyéticas , Índice de Severidad de la Enfermedad , Proteína del Síndrome de Wiskott-Aldrich/genética , Estudios de Seguimiento , Persona de Mediana Edad , Pronóstico , Tasa de SupervivenciaRESUMEN
Activated phosphoinositide 3-kinase delta (PI3Kδ) syndrome (APDS) is an inborn error of immunity with clinical manifestations including infections, lymphoproliferation, autoimmunity, enteropathy, bronchiectasis, increased risk of lymphoma, and early mortality. Hyperactive PI3Kδ signaling causes APDS and is selectively targeted with leniolisib, an oral, small molecule inhibitor of PI3Kδ. Here, 31 patients with APDS aged ≥12 years were enrolled in a global, phase 3, triple-blinded trial and randomized 2:1 to receive 70 mg leniolisib or placebo twice daily for 12 weeks. Coprimary outcomes were differences from baseline in the index lymph node size and the percentage of naïve B cells in peripheral blood, assessed as proxies for immune dysregulation and deficiency. Both primary outcomes were met: the difference in the adjusted mean change (95% confidence interval [CI]) between leniolisib and placebo for lymph node size was -0.25 (-0.38, -0.12; P = .0006; N = 26) and for percentage of naïve B cells, was 37.30 (24.06, 50.54; P = .0002; N = 13). Leniolisib reduced spleen volume compared with placebo (adjusted mean difference in 3-dimensional volume [cm3], -186; 95% CI, -297 to -76.2; P = .0020) and improved key immune cell subsets. Fewer patients receiving leniolisib reported study treatment-related adverse events (AEs; mostly grades 1-2) than those receiving placebo (23.8% vs 30.0%). Overall, leniolisib was well tolerated and significant improvement over placebo was notable in the coprimary endpoints, reducing lymphadenopathy and increasing the percentage of naïve B cells, reflecting a favorable impact on the immune dysregulation and deficiency seen in patients with APDS. This trial was registered at www.clinicaltrials.gov as #NCT02435173.
Asunto(s)
Fosfatidilinositol 3-Quinasas , Pirimidinas , Humanos , Fosfatidilinositol 3-Quinasa Clase I , Piridinas , Método Doble CiegoRESUMEN
BACKGROUND: Thromboinflammation is caused by mutual activation of platelets and neutrophils. The site of thromboinflammation is determined by chemoattracting agents release by endothelium, immune cells, and platelets. Impaired neutrophil chemotaxis contributes to the pathogenesis of Shwachman-Diamond syndrome (SDS). In this hereditary disorder, neutrophils are known to have aberrant chemoattractant-induced F-actin properties. Here, we aim to determine whether neutrophil chemotaxis could be analyzed using our previously developed ex vivo assay of the neutrophils crawling among the growing thrombi. METHODS: Adult and pediatric healthy donors, alongside with pediatric patients with SDS, were recruited for the study. Thrombus formation and granulocyte movement in hirudinated whole blood were visualized by fluorescent microscopy in fibrillar collagen-coated parallel-plate flow chambers. Alternatively, fibrinogen, fibronectin, vWF, or single tumor cells immobilized on coverslips were used. A computational model of chemokine distribution in flow chamber with a virtual neutrophil moving in it was used to analyze the observed data. RESULTS: The movement of healthy donor neutrophils predominantly occurred in the direction and vicinity of thrombi grown on collagen or around tumor cells. For SDS patients or on coatings other than collagen, the movement was characterized by randomness and significantly reduced velocities. Increase in wall shear rates to 300-500 1/s led to an increase in the proportion of rolling neutrophils. A stochastic algorithm simulating leucocyte chemotaxis movement in the calculated chemoattractant field could reproduce the experimental trajectories of moving neutrophils for 72% of cells. CONCLUSIONS: In samples from healthy donors, but not SDS patients, neutrophils move in the direction of large, chemoattractant-releasing platelet thrombi growing on collagen.
Asunto(s)
Neutrófilos , Trombosis , Humanos , Neutrófilos/fisiología , Trombosis/fisiopatología , Quimiotaxis , Adulto , Niño , Masculino , Quimiotaxis de Leucocito , Femenino , Movimiento CelularRESUMEN
BACKGROUND: Activated phosphoinositide 3-kinase delta (PI3Kδ) syndrome (APDS; or p110δ-activating mutations causing senescent T cells, lymphadenopathy, and immunodeficiency) is an inborn error of immunity caused by PI3Kδ hyperactivity. Resultant immune deficiency and dysregulation lead to recurrent sinopulmonary infections, herpes viremia, autoimmunity, and lymphoproliferation. OBJECTIVE: Leniolisib, a selective PI3Kδ inhibitor, demonstrated favorable impact on immune cell subsets and lymphoproliferation over placebo in patients with APDS over 12 weeks. Here, we report results from an interim analysis of an ongoing open-label, single-arm extension study. METHODS: Patients with APDS aged 12 years or older who completed NCT02435173 or had previous exposure to PI3Kδ inhibitors were eligible. The primary end point was safety, assessed via investigator-reported adverse events (AEs) and clinical/laboratory evaluations. Secondary and exploratory end points included health-related quality of life, inflammatory markers, frequency of infections, and lymphoproliferation. RESULTS: Between September 2016 and August 2021, 37 patients (median age, 20 years; 42.3% female) were enrolled. Of these 37 patients, 26, 9, and 2 patients had previously received leniolisib, placebo, or other PI3Kδ inhibitors, respectively. At the data cutoff date (December 13, 2021), median leniolisib exposure was 102 weeks. Overall, 32 patients (87%) experienced an AE. Most AEs were grades 1 to 3; none were grade 4. One patient with severe baseline comorbidities experienced a grade 5 AE, determined as unrelated to leniolisib treatment. While on leniolisib, patients had reduced annualized infection rates (P = .004), and reductions in immunoglobulin replacement therapy occurred in 10 of 27 patients. Other observations include reduced lymphadenopathy and splenomegaly, improved cytopenias, and normalized lymphocyte subsets. CONCLUSIONS: Leniolisib was well tolerated and maintained durable outcomes with up to 5 years of exposure in 37 patients with APDS. CLINICALTRIALS: gov identifier: NCT02859727.
Asunto(s)
Síndromes de Inmunodeficiencia , Linfadenopatía , Humanos , Femenino , Adulto Joven , Adulto , Masculino , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasas/genética , Calidad de Vida , Mutación , Síndromes de Inmunodeficiencia/genética , Linfadenopatía/complicacionesRESUMEN
BACKGROUND: Inborn errors of immunity (IEI) with dysregulated JAK/STAT signaling present with variable manifestations of immune dysregulation and infections. Hematopoietic stem cell transplantation (HSCT) is potentially curative, but initially reported outcomes were poor. JAK inhibitors (JAKi) offer a targeted treatment option that may be an alternative or bridge to HSCT. However, data on their current use, treatment efficacy and adverse events are limited. OBJECTIVE: We evaluated the current off-label JAKi treatment experience for JAK/STAT inborn errors of immunity (IEI) among European Society for Immunodeficiencies (ESID)/European Society for Blood and Marrow Transplantation (EBMT) Inborn Errors Working Party (IEWP) centers. METHODS: We conducted a multicenter retrospective study on patients with a genetic disorder of hyperactive JAK/STAT signaling who received JAKi treatment for at least 3 months. RESULTS: Sixty-nine patients (72% children) were evaluated (45 STAT1 gain of function [GOF], 21 STAT3-GOF, 1 STAT5B-GOF, 1 suppressor of cytokine signaling 1 [aka SOCS1] loss of function, 1 JAK1-GOF). Ruxolitinib was the predominantly prescribed JAKi (80%). Overall, treatment resulted in improvement (partial or complete remission) of clinical symptoms in 87% of STAT1-GOF and in 90% of STAT3-GOF patients. We documented highly heterogeneous dosing and monitoring regimens. The response rate and time to response varied across different diseases and manifestations. Adverse events including infection and weight gain were frequent (38% of patients) but were mild (grade I-II) and transient in most patients. At last follow-up, 52 (74%) of 69 patients were still receiving JAKi treatment, and 11 patients eventually underwent HSCT after receipt of previous JAKi bridging therapy, with 91% overall survival. CONCLUSIONS: Our study suggests that JAKi may be highly effective to treat symptomatic JAK/STAT IEI patients. Prospective studies to define optimal JAKi dosing for the variable clinical presentations and age ranges should be pursued.
Asunto(s)
Síndromes de Inmunodeficiencia , Inhibidores de las Cinasas Janus , Niño , Humanos , Inhibidores de las Cinasas Janus/uso terapéutico , Estudios Retrospectivos , Estudios Prospectivos , Síndromes de Inmunodeficiencia/terapia , Resultado del TratamientoRESUMEN
More than 450 genetic defects result in inborn errors of immunity (IEI). Their individual prevalence in specific cohorts is influenced by national characteristics and other factors. We present results of genetic testing conducted in 1809 Russian children with IEI. Genetic defects confirming IEI were found in 1112 out of 1809 (61.5%) probands. These defects included variants in 118 single genes (87.9% of patients) and aberrations in 6 chromosomes (11.8%). Notably, three patients harbored pathogenic variants in more than one IEI gene. Large deletions constituted 5% of all defects. Out of the 799 original variants, 350 (44%) have not been described previously. Rare genetic defects (10 or fewer patients per gene) were identified in 20% of the patients. Among 967 probands with germline variants, defects were inherited in an autosomal dominant manner in 29%, X-linked in 34%, and autosomal recessive in 37%. Four females with non-random X-inactivation exhibited symptoms of X-linked diseases (BTK, WAS, CYBB, IKBKG gene defects). Despite a relatively low rate of consanguinity in Russia, 47.9% of autosomal recessive gene defects were found in a homozygous state. Notably, 28% of these cases carried "Slavic" mutation of the NBN gene or known hot-spot mutations in other genes. The diversity of IEI genetic forms and the high frequency of newly described variants underscore the genetic heterogeneity within the Russian IEI group. The new variants identified in this extensive cohort will enrich genetic databases.
Asunto(s)
Pruebas Genéticas , Humanos , Femenino , Masculino , Niño , Preescolar , Lactante , Estudios de Cohortes , Federación de Rusia/epidemiología , Adolescente , Mutación/genética , Recién Nacido , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/inmunología , Enfermedades Genéticas Congénitas/epidemiología , Enfermedades del Sistema Inmune/genética , Enfermedades del Sistema Inmune/diagnóstico , Predisposición Genética a la EnfermedadRESUMEN
Newborn screening (NBS) for severe inborn errors of immunity (IEI), affecting T lymphocytes, and implementing measurements of T cell receptor excision circles (TREC) has been shown to be effective in early diagnosis and improved prognosis of patients with these genetic disorders. Few studies conducted on smaller groups of newborns report results of NBS that also include measurement of kappa-deleting recombination excision circles (KREC) for IEI affecting B lymphocytes. A pilot NBS study utilizing TREC/KREC detection was conducted on 202,908 infants born in 8 regions of Russia over a 14-month period. One hundred thirty-four newborns (0.66) were NBS positive after the first test and subsequent retest, 41% of whom were born preterm. After lymphocyte subsets were assessed via flow cytometry, samples of 18 infants (0.09) were sent for whole exome sequencing. Confirmed genetic defects were consistent with autosomal recessive agammaglobulinemia in 1/18, severe combined immunodeficiency - in 7/18, 22q11.2DS syndrome - in 4/18, combined immunodeficiency - in 1/18 and trisomy 21 syndrome - in 1/18. Two patients in whom no genetic defect was found met criteria of (severe) combined immunodeficiency with syndromic features. Three patients appeared to have transient lymphopenia. Our findings demonstrate the value of implementing combined TREC/KREC NBS screening and inform the development of policies and guidelines for its integration into routine newborn screening programs.
Asunto(s)
Linfopenia , Inmunodeficiencia Combinada Grave , Lactante , Recién Nacido , Humanos , Tamizaje Neonatal/métodos , Proyectos Piloto , Linfopenia/diagnóstico , Linfocitos T , Inmunodeficiencia Combinada Grave/diagnóstico , Inmunodeficiencia Combinada Grave/genética , ADN , Receptores de Antígenos de Linfocitos T/genéticaRESUMEN
Copy number variation (CNV) at the 16p11.2 locus is associated with neuropsychiatric disorders, such as autism spectrum disorder and schizophrenia. CNVs of the 16p gene can manifest in opposing head sizes. Carriers of 16p11.2 deletion tend to have macrocephaly (or brain enlargement), while those with 16p11.2 duplication frequently have microcephaly. Increases in both gray and white matter volume have been observed in brain imaging studies in 16p11.2 deletion carriers with macrocephaly. Here, we use human induced pluripotent stem cells (hiPSCs) derived from controls and subjects with 16p11.2 deletion and 16p11.2 duplication to understand the underlying mechanisms regulating brain overgrowth. To model both gray and white matter, we differentiated patient-derived iPSCs into neural progenitor cells (NPCs) and oligodendrocyte progenitor cells (OPCs). In both NPCs and OPCs, we show that CD47 (a "don't eat me" signal) is overexpressed in the 16p11.2 deletion carriers contributing to reduced phagocytosis both in vitro and in vivo. Furthermore, 16p11.2 deletion NPCs and OPCs up-regulate cell surface expression of calreticulin (a prophagocytic "eat me" signal) and its binding sites, indicating that these cells should be phagocytosed but fail to be eliminated due to elevations in CD47. Treatment of 16p11.2 deletion NPCs and OPCs with an anti-CD47 antibody to block CD47 restores phagocytosis to control levels. While the CD47 pathway is commonly implicated in cancer progression, we document a role for CD47 in psychiatric disorders associated with brain overgrowth.
Asunto(s)
Trastorno Autístico/metabolismo , Encéfalo/metabolismo , Antígeno CD47/metabolismo , Trastornos de los Cromosomas/metabolismo , Discapacidad Intelectual/metabolismo , Adolescente , Adulto , Animales , Trastorno Autístico/patología , Encéfalo/patología , Antígeno CD47/antagonistas & inhibidores , Antígeno CD47/genética , Calreticulina/genética , Calreticulina/metabolismo , Línea Celular , Células Cultivadas , Niño , Preescolar , Deleción Cromosómica , Trastornos de los Cromosomas/patología , Cromosomas Humanos Par 16/metabolismo , Femenino , Humanos , Células Madre Pluripotentes Inducidas/citología , Discapacidad Intelectual/patología , Masculino , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Células Precursoras de Oligodendrocitos/citología , Células Precursoras de Oligodendrocitos/metabolismoRESUMEN
Somatic cell transcription factors are critical to maintaining cellular identity and constitute a barrier to human somatic cell reprogramming; yet a comprehensive understanding of the mechanism of action is lacking. To gain insight, we examined epigenome remodeling at the onset of human nuclear reprogramming by profiling human fibroblasts after fusion with murine embryonic stem cells (ESCs). By assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and chromatin immunoprecipitation sequencing we identified enrichment for the activator protein 1 (AP-1) transcription factor c-Jun at regions of early transient accessibility at fibroblast-specific enhancers. Expression of a dominant negative AP-1 mutant (dnAP-1) reduced accessibility and expression of fibroblast genes, overcoming the barrier to reprogramming. Remarkably, efficient reprogramming of human fibroblasts to induced pluripotent stem cells was achieved by transduction with vectors expressing SOX2, KLF4, and inducible dnAP-1, demonstrating that dnAP-1 can substitute for exogenous human OCT4. Mechanistically, we show that the AP-1 component c-Jun has two unexpected temporally distinct functions in human reprogramming: 1) to potentiate fibroblast enhancer accessibility and fibroblast-specific gene expression, and 2) to bind to and repress OCT4 as a complex with MBD3. Our findings highlight AP-1 as a previously unrecognized potent dual gatekeeper of the somatic cell state.
Asunto(s)
Reprogramación Celular , Regulación de la Expresión Génica , Células Madre Embrionarias de Ratones/metabolismo , Factor de Transcripción AP-1/metabolismo , Animales , Línea Celular , Humanos , Factor 4 Similar a Kruppel , Ratones , Factor de Transcripción AP-1/genéticaRESUMEN
BACKGROUND: Deficiency of adenosine deaminase 2 (DADA2) results in heterogeneous manifestations including systemic vasculitis and red cell aplasia. The basis of different disease phenotypes remains incompletely defined. OBJECTIVE: We sought to further delineate disease phenotypes in DADA2 and define the mechanistic basis of ADA2 variants. METHODS: We analyzed the clinical features and ADA2 variants in 33 patients with DADA2. We compared the transcriptomic profile of 14 patients by bulk RNA sequencing. ADA2 variants were expressed experimentally to determine impact on protein production, trafficking, release, and enzymatic function. RESULTS: Transcriptomic analysis of PBMCs from DADA2 patients with the vasculitis phenotype or pure red cell aplasia phenotype exhibited similar upregulation of TNF, type I interferon, and type II interferon signaling pathways compared with healthy controls. These pathways were also activated in 3 asymptomatic individuals with DADA2. Analysis of ADA2 variants, including 7 novel variants, showed different mechanisms of functional disruption including (1) unstable transcript leading to RNA degradation; (2) impairment of ADA2 secretion because of retention in the endoplasmic reticulum; (3) normal expression and secretion of ADA2 that lacks enzymatic function; and (4) disruption of the N-terminal signal peptide leading to cytoplasmic localization of unglycosylated protein. CONCLUSIONS: Transcriptomic signatures of inflammation are observed in patients with different disease phenotypes, including some asymptomatic individuals. Disease-associated ADA2 variants affect protein function by multiple mechanisms, which may contribute to the clinical heterogeneity of DADA2.
Asunto(s)
Adenosina Desaminasa , Vasculitis , Humanos , Adenosina Desaminasa/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Fenotipo , MutaciónRESUMEN
The expanded newborn screening (NBS) program in the Russian Federation was initiated in 2023, among which severe combined immunodeficiency (SCID) is screened using TREC/KREC assays. Here, we report a rare case of a TP63-associated disease identified through this NBS program. Dried blood spots from newborns were initially screened for TREC/KREC levels, and those with values below the cut-off underwent confirmatory testing and further genetic analysis, including whole-exome sequencing (WES). A male newborn was identified with significantly reduced TREC values, indicative of T cell lymphopenia. Genetic analysis revealed a heterozygous NM_003722.5:c.1027C>T variant in TP63, leading to the p.(Arg343Trp) substitution within the DNA binding domain. This mutation has been previously associated with Ectrodactyly-Ectodermal Dysplasia-Cleft lip/palate syndrome (EEC) syndrome and shown to reduce the transactivation activity of TP63 in a dominant-negative manner. This case represents one of the few instances of immune system involvement in a patient with a TP63 mutation, highlighting the need for further investigation into the immunological aspects of TP63-associated disorders. Our findings suggest that comprehensive immunological evaluation should be considered for patients with TP63 mutations to better understand and manage potential immune dysfunctions.
Asunto(s)
Linfopenia , Tamizaje Neonatal , Factores de Transcripción , Proteínas Supresoras de Tumor , Humanos , Recién Nacido , Linfopenia/genética , Linfopenia/diagnóstico , Masculino , Proteínas Supresoras de Tumor/genética , Factores de Transcripción/genética , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/diagnóstico , Mutación , Secuenciación del ExomaRESUMEN
BACKGROUND: Diabetes is an established risk factor for colorectal cancer. However, the mechanisms underlying this relationship still require investigation and it is not known if the association is modified by genetic variants. To address these questions, we undertook a genome-wide gene-environment interaction analysis. METHODS: We used data from 3 genetic consortia (CCFR, CORECT, GECCO; 31,318 colorectal cancer cases/41,499 controls) and undertook genome-wide gene-environment interaction analyses with colorectal cancer risk, including interaction tests of genetics(G)xdiabetes (1-degree of freedom; d.f.) and joint testing of Gxdiabetes, G-colorectal cancer association (2-d.f. joint test) and G-diabetes correlation (3-d.f. joint test). RESULTS: Based on the joint tests, we found that the association of diabetes with colorectal cancer risk is modified by loci on chromosomes 8q24.11 (rs3802177, SLC30A8 - ORAA: 1.62, 95% CI: 1.34-1.96; ORAG: 1.41, 95% CI: 1.30-1.54; ORGG: 1.22, 95% CI: 1.13-1.31; p-value3-d.f.: 5.46 × 10-11) and 13q14.13 (rs9526201, LRCH1 - ORGG: 2.11, 95% CI: 1.56-2.83; ORGA: 1.52, 95% CI: 1.38-1.68; ORAA: 1.13, 95% CI: 1.06-1.21; p-value2-d.f.: 7.84 × 10-09). DISCUSSION: These results suggest that variation in genes related to insulin signaling (SLC30A8) and immune function (LRCH1) may modify the association of diabetes with colorectal cancer risk and provide novel insights into the biology underlying the diabetes and colorectal cancer relationship.
Asunto(s)
Neoplasias Colorrectales , Diabetes Mellitus , Humanos , Interacción Gen-Ambiente , Predisposición Genética a la Enfermedad , Factores de Riesgo , Diabetes Mellitus/genética , Neoplasias Colorrectales/genética , Polimorfismo de Nucleótido Simple , Estudio de Asociación del Genoma Completo/métodos , Proteínas de Microfilamentos/genéticaRESUMEN
Wiskott-Aldrich syndrome (WAS) is an X-linked recessive disorder caused by WAS gene mutations resulting in haematopoietic/immune cell defects. Recent studies report accelerated death of WAS platelets and lymphocytes. Data on megakaryocyte (MK) maturation, viability and their possible role in thrombocytopenia development in WAS are limited. In this study we evaluate the MK viability and morphology in untreated, romiplostim-treated WAS patients compared with normal controls. The study included 32 WAS patients and 17 healthy donors. MKs were captured from bone marrow aspirates by surface-immobilized anti-GPIIb-IIIa antibody. Viability (by phosphatidylserine [PS] externalization), distribution by maturation stages and size of MK were determined by light microscopy. MK distribution by maturation stages in patients differed from controls. 40 ± 22% of WAS MKs versus 23 ± 11% of normal MKs were at maturation stage 3 (p = 0.02), whereas 24 ± 20% in WAS and 39 ± 14% in controls had megakaryoblast morphology (p = 0.05). Romiplostim treatment changed the MK maturation stages distribution close to normal. PS-positive (PS+) MK in WAS was significantly higher (21 ± 21%) than in healthy controls (2 ± 4%, p < 0.01). WAS patients with more damaging truncating mutations and higher disease score had higher PS+ MK fraction (Spearman r = 0.6, p < 0.003). We conclude that WAS MKs have increased cell death tendency and changes in maturation pattern. Both could contribute to thrombocytopenia in WAS patients.
Asunto(s)
Trombocitopenia , Síndrome de Wiskott-Aldrich , Humanos , Megacariocitos , Síndrome de Wiskott-Aldrich/genética , Plaquetas/metabolismo , Trombocitopenia/genética , HematopoyesisRESUMEN
PURPOSE: Allogeneic hematopoietic stem cell transplantation (HSCT) is an established therapy for many inborn errors of immunity (IEI). The indications for HSCT have expanded over the last decade. The study aimed to collect and analyze the data on HSCT activity in IEI in Russia. METHODS: The data were collected from the Russian Primary Immunodeficiency Registry and complemented with information from five Russian pediatric transplant centers. Patients diagnosed with IEI by the age of 18 years and who received allogeneic HSCT by the end of 2020 were included. RESULTS: From 1997 to 2020, 454 patients with IEI received 514 allogeneic HSCT. The median number of HSCTs per year has risen from 3 in 1997-2009 to 60 in 2015-2020. The most common groups of IEI were immunodeficiency affecting cellular and humoral immunity (26%), combined immunodeficiency with associated/syndromic features (28%), phagocyte defects (21%), and diseases of immune dysregulation (17%). The distribution of IEI diagnosis has changed: before 2012, the majority (65%) had severe combined immunodeficiency (SCID) and hemophagocytic lymphohistiocytosis (HLH), and after 2012, only 24% had SCID and HLH. Of 513 HSCTs, 48.5% were performed from matched-unrelated, 36.5% from mismatched-related (MMRD), and 15% from matched-related donors. In 349 transplants T-cell depletion was used: 325 TCRαß/CD19+ depletion, 39 post-transplant cyclophosphamide, and 27 other. The proportion of MMRD has risen over the recent years. CONCLUSION: The practice of HSCT in IEI has been changing in Russia. Expanding indications to HSCT and SCID newborn screening implementation may necessitate additional transplant beds for IEI in Russia.
Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Síndromes de Inmunodeficiencia , Linfohistiocitosis Hemofagocítica , Inmunodeficiencia Combinada Grave , Niño , Recién Nacido , Humanos , Adolescente , Síndromes de Inmunodeficiencia/diagnóstico , Síndromes de Inmunodeficiencia/epidemiología , Síndromes de Inmunodeficiencia/terapia , Receptores de Antígenos de Linfocitos T alfa-beta , Inmunodeficiencia Combinada Grave/terapia , Linfohistiocitosis Hemofagocítica/diagnósticoRESUMEN
Autosomal recessive (AR) STAT1 deficiency is a severe inborn error of immunity disrupting cellular responses to type I, II, and III IFNs, and IL-27, and conferring a predisposition to both viral and mycobacterial infections. We report the genetic, immunological, and clinical features of an international cohort of 32 patients from 20 kindreds: 24 patients with complete deficiency, and 8 patients with partial deficiency. Twenty-four patients suffered from mycobacterial disease (bacillus Calmette-Guérin = 13, environmental mycobacteria = 10, or both in 1 patient). Fifty-four severe viral episodes occurred in sixteen patients, mainly caused by Herpesviridae viruses. Attenuated live measles, mumps, and rubella and/or varicella zoster virus vaccines triggered severe reactions in the five patients with complete deficiency who were vaccinated. Seven patients developed features of hemophagocytic syndrome. Twenty-one patients died, and death was almost twice as likely in patients with complete STAT1 deficiency than in those with partial STAT1 deficiency. All but one of the eight survivors with AR complete deficiency underwent hematopoietic stem cell transplantation. Overall survival after hematopoietic stem cell transplantation was 64%. A diagnosis of AR STAT1 deficiency should be considered in children with mycobacterial and/or viral infectious diseases. It is important to distinguish between complete and partial forms of AR STAT1 deficiency, as their clinical outcome and management differ significantly.
Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Linfohistiocitosis Hemofagocítica , Infecciones por Mycobacterium , Mycobacterium bovis , Humanos , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismoRESUMEN
BACKGROUND: The process of thrombus formation is thought to involve interactions between platelets and leukocytes. Leukocyte incorporation into growing thrombi has been well established in vivo, and a number of properties of platelet-leukocyte interactions critical for thrombus formation have been characterized in vitro in thromboinflammatory settings and have clinical relevance. Leukocyte activity can be impaired in distinct hereditary and acquired disorders of immunological nature, among which is Wiskott-Aldrich Syndrome (WAS). However, a more quantitative characterization of leukocyte behavior in thromboinflammatory conditions has been hampered by lack of approaches for its study ex vivo. Here, we aimed to develop an ex vivo model of thromboinflammation, and compared granulocyte behavior of WAS patients and healthy donors. RESULTS: Thrombus formation in anticoagulated whole blood from healthy volunteers and patients was visualized by fluorescent microscopy in parallel-plate flow chambers with fibrillar collagen type I coverslips. Moving granulocytes were observed in hirudinated or sodium citrate-recalcified blood under low wall shear rate conditions (100 s-1). These cells crawled around thrombi in a step-wise manner with an average velocity of 90-120 nm/s. Pre-incubation of blood with granulocyte priming agents lead to a significant decrease in mean-velocity of the cells and increase in the number of adherent cells. The leukocytes from patients with WAS demonstrated a 1.5-fold lower mean velocity, in line with their impaired actin polymerization. It is noteworthy that in an experimental setting where patients' platelets were replaced with healthy donor's platelets the granulocytes' crawling velocity did not change, thus proving that WASP (WAS protein) deficiency causes disruption of granulocytes' behavior. Thereby, the observed features of granulocytes crawling are consistent with the neutrophil chemotaxis phenomenon. As most of the crawling granulocytes carried procoagulant platelets teared from thrombi, we propose that the role of granulocytes in thrombus formation is that of platelet scavengers. CONCLUSIONS: We have developed an ex vivo experimental model applicable for observation of granulocyte activity in thrombus formation. Using the proposed setting, we observed a reduction of motility of granulocytes of patients with WAS. We suggest that our ex vivo approach should be useful both for basic and for clinical research.