Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Bioinformatics ; 39(8)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37498558

RESUMEN

MOTIVATION: Single-cell RNA-sequencing (scRNA-seq) has enabled the molecular profiling of thousands to millions of cells simultaneously in biologically heterogenous samples. Currently, the common practice in scRNA-seq is to determine cell type labels through unsupervised clustering and the examination of cluster-specific genes. However, even small differences in analysis and parameter choosing can greatly alter clustering results and thus impose great influence on which cell types are identified. Existing methods largely focus on determining the optimal number of robust clusters, which can be problematic for identifying cells of extremely low abundance due to their subtle contributions toward overall patterns of gene expression. RESULTS: Here, we present a carefully designed framework, SCISSORS, which accurately profiles subclusters within broad cluster(s) for the identification of rare cell types in scRNA-seq data. SCISSORS employs silhouette scoring for the estimation of heterogeneity of clusters and reveals rare cells in heterogenous clusters by a multi-step semi-supervised reclustering process. Additionally, SCISSORS provides a method for the identification of marker genes of high specificity to the cell type. SCISSORS is wrapped around the popular Seurat R package and can be easily integrated into existing Seurat pipelines. AVAILABILITY AND IMPLEMENTATION: SCISSORS, including source code and vignettes, are freely available at https://github.com/jr-leary7/SCISSORS.


Asunto(s)
Algoritmos , Perfilación de la Expresión Génica , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Análisis por Conglomerados , ARN
2.
Front Genet ; 13: 865384, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35860476

RESUMEN

Studies suggest that 1-3% of the general population in the United States unknowingly carry a genetic risk factor for a common hereditary disease. Population genetic screening is the process of offering otherwise healthy patients in the general population testing for genomic variants that predispose them to diseases that are clinically actionable, meaning that they can be prevented or mitigated if they are detected early. Population genetic screening may significantly reduce morbidity and mortality from these diseases by informing risk-specific prevention or treatment strategies and facilitating appropriate participation in early detection. To better understand current barriers, facilitators, perceptions, and outcomes related to the implementation of population genetic screening, we conducted a systematic review and searched PubMed, Embase, and Scopus for articles published from date of database inception to May 2020. We included articles that 1) detailed the perspectives of participants in population genetic screening programs and 2) described the barriers, facilitators, perceptions, and outcomes related to population genetic screening programs among patients, healthcare providers, and the public. We excluded articles that 1) focused on direct-to-consumer or risk-based genetic testing and 2) were published before January 2000. Thirty articles met these criteria. Barriers and facilitators to population genetic screening were organized by the Social Ecological Model and further categorized by themes. We found that research in population genetic screening has focused on stakeholder attitudes with all included studies designed to elucidate individuals' perceptions. Additionally, inadequate knowledge and perceived limited clinical utility presented a barrier for healthcare provider uptake. There were very few studies that conducted long-term follow-up and evaluation of population genetic screening. Our findings suggest that these and other factors, such as prescreen counseling and education, may play a role in the adoption and implementation of population genetic screening. Future studies to investigate macro-level determinants, strategies to increase provider buy-in and knowledge, delivery models for prescreen counseling, and long-term outcomes of population genetic screening are needed for the effective design and implementation of such programs. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020198198.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA