Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 628(8007): 299-305, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38438066

RESUMEN

Perovskite solar cells (PSCs) are among the most promising photovoltaic technologies owing to their exceptional optoelectronic properties1,2. However, the lower efficiency, poor stability and reproducibility issues of large-area PSCs compared with laboratory-scale PSCs are notable drawbacks that hinder their commercialization3. Here we report a synergistic dopant-additive combination strategy using methylammonium chloride (MACl) as the dopant and a Lewis-basic ionic-liquid additive, 1,3-bis(cyanomethyl)imidazolium chloride ([Bcmim]Cl). This strategy effectively inhibits the degradation of the perovskite precursor solution (PPS), suppresses the aggregation of MACl and results in phase-homogeneous and stable perovskite films with high crystallinity and fewer defects. This approach enabled the fabrication of perovskite solar modules (PSMs) that achieved a certified efficiency of 23.30% and ultimately stabilized at 22.97% over a 27.22-cm2 aperture area, marking the highest certified PSM performance. Furthermore, the PSMs showed long-term operational stability, maintaining 94.66% of the initial efficiency after 1,000 h under continuous one-sun illumination at room temperature. The interaction between [Bcmim]Cl and MACl was extensively studied to unravel the mechanism leading to an enhancement of device properties. Our approach holds substantial promise for bridging the benchtop-to-rooftop gap and advancing the production and commercialization of large-area perovskite photovoltaics.

2.
Chem Asian J ; : e202400686, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013783

RESUMEN

Perovskite solar cells are actively investigated for their potential as highly efficient and cost-effective photovoltaic devices. However, a significant challenge in their practical application is enhancing their durability. Particularly, these cells are expected to be subjected to heating by sunlight in real-world operating environments. Therefore, high-temperature durability and device operation under such conditions are critical. Our study aims to improve the durability of perovskite solar cells for practical applications by examining their temperature coefficients at elevated temperatures using MA-free compositions. We assessed these coefficients and investigated their correlation with the ideality factor, revealing that carrier recombination markedly affects the temperature behavior of these cells. Our methodology involves simple J-V measurements to evaluate device degradation at high temperatures, paving the way for further research to enhance device performance in such environments.

3.
Nat Commun ; 15(1): 5632, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965276

RESUMEN

The power conversion efficiency of perovskite solar cells continues to increase. However, defects in perovskite materials are detrimental to their carrier dynamics and structural stability, ultimately limiting the photovoltaic characteristics and stability of perovskite solar cells. Herein, we report that 6H polytype perovskite effectively engineers defects at the interface with cubic polytype FAPbI3, which facilitates radiative recombination and improves the stability of the polycrystalline film. We particularly show the detrimental effects of shallow-level defect that originates from the formation of the most dominant iodide vacancy (VI+) in FAPbI3. Furthermore, additional surface passivation on top of the hetero-polytypic perovskite film results in an ultra-long carrier lifetime exceeding 18 µs, affords power conversion efficiencies of 24.13% for perovskite solar cells, 21.92% (certified power conversion efficiency: 21.44%) for a module, and long-term stability. The hetero-polytypic perovskite configuration may be considered as close to the ideal polycrystalline structure in terms of charge carrier dynamics and stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA