Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Health ; 13(1): 28, 2014 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-24735818

RESUMEN

BACKGROUND: Characterizing intra-urban variation in air quality is important for epidemiological investigation of health outcomes and disparities. To date, however, few studies have been designed to capture spatial variation during select hours of the day, or to examine the roles of meteorology and complex terrain in shaping intra-urban exposure gradients. METHODS: We designed a spatial saturation monitoring study to target local air pollution sources, and to understand the role of topography and temperature inversions on fine-scale pollution variation by systematically allocating sampling locations across gradients in key local emissions sources (vehicle traffic, industrial facilities) and topography (elevation) in the Pittsburgh area. Street-level integrated samples of fine particulate matter (PM2.5), black carbon (BC), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3) were collected during morning rush and probable inversion hours (6-11 AM), during summer and winter. We hypothesized that pollution concentrations would be: 1) higher under inversion conditions, 2) exacerbated in lower-elevation areas, and 3) vary by season. RESULTS: During July - August 2011 and January - March 2012, we observed wide spatial and seasonal variability in pollution concentrations, exceeding the range measured at regulatory monitors. We identified elevated concentrations of multiple pollutants at lower-elevation sites, and a positive association between inversion frequency and NO2 concentration. We examined temporal adjustment methods for deriving seasonal concentration estimates, and found that the appropriate reference temporal trend differs between pollutants. CONCLUSIONS: Our time-stratified spatial saturation approach found some evidence for modification of inversion-concentration relationships by topography, and provided useful insights for refining and interpreting GIS-based pollution source indicators for Land Use Regression modeling.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Carbono/análisis , Ciudades , Sistemas de Información Geográfica , Dióxido de Nitrógeno/análisis , Material Particulado/análisis , Pennsylvania , Análisis de Regresión , Estaciones del Año , Temperatura , Factores de Tiempo
2.
Artículo en Inglés | MEDLINE | ID: mdl-30301154

RESUMEN

Health effects of fine particulate matter (PM2.5) may vary by composition, and the characterization of constituents may help to identify key PM2.5 sources, such as diesel, distributed across an urban area. The composition of diesel particulate matter (DPM) is complicated, and elemental and organic carbon are often used as surrogates. Examining multiple elemental and organic constituents across urban sites, however, may better capture variation in diesel-related impacts, and help to more clearly separate diesel from other sources. We designed a "super-saturation" monitoring campaign of 36 sites to capture spatial variance in PM2.5 and elemental and organic constituents across the downtown Pittsburgh core (~2.8 km²). Elemental composition was assessed via inductively-coupled plasma mass spectrometry (ICP-MS), organic and elemental carbon via thermal-optical reflectance, and organic compounds via thermal desorption gas-chromatography mass-spectrometry (TD-GCMS). Factor analysis was performed including all constituents-both stratified by, and merged across, seasons. Spatial patterning in the resultant factors was examined using land use regression (LUR) modelling to corroborate factor interpretations. We identified diesel-related factors in both seasons; for winter, we identified a five-factor solution, describing a bus and truck-related factor [black carbon (BC), fluoranthene, nitrogen dioxide (NO2), pyrene, total carbon] and a fuel oil combustion factor (nickel, vanadium). For summer, we identified a nine-factor solution, which included a bus-related factor (benzo[ghi]fluoranthene, chromium, chrysene, fluoranthene, manganese, pyrene, total carbon, total elemental carbon, zinc) and a truck-related factor (benz[a]anthracene, BC, hopanes, NO2, total PAHs, total steranes). Geographic information system (GIS)-based emissions source covariates identified via LUR modelling roughly corroborated factor interpretations.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Emisiones de Vehículos/análisis , Carbono/análisis , Ciudades , Análisis Factorial , Sistemas de Información Geográfica , Vehículos a Motor , Dióxido de Nitrógeno/análisis , Compuestos Orgánicos/análisis , Material Particulado/química , Hidrocarburos Policíclicos Aromáticos/análisis , Estaciones del Año , Hollín/análisis , Regresión Espacial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA