RESUMEN
BACKGROUND: The COVID-19 pandemic has caused substantial morbidity and mortality. OBJECTIVE: To describe monthly clinical trends among adults hospitalized with COVID-19. DESIGN: Pooled cross-sectional study. SETTING: 99 counties in 14 states participating in the Coronavirus Disease 2019-Associated Hospitalization Surveillance Network (COVID-NET). PATIENTS: U.S. adults (aged ≥18 years) hospitalized with laboratory-confirmed COVID-19 during 1 March to 31 December 2020. MEASUREMENTS: Monthly hospitalizations, intensive care unit (ICU) admissions, and in-hospital death rates per 100 000 persons in the population; monthly trends in weighted percentages of interventions, including ICU admission, mechanical ventilation, and vasopressor use, among an age- and site-stratified random sample of hospitalized case patients. RESULTS: Among 116 743 hospitalized adults with COVID-19, the median age was 62 years, 50.7% were male, and 40.8% were non-Hispanic White. Monthly rates of hospitalization (105.3 per 100 000 persons), ICU admission (20.2 per 100 000 persons), and death (11.7 per 100 000 persons) peaked during December 2020. Rates of all 3 outcomes were highest among adults aged 65 years or older, males, and Hispanic or non-Hispanic Black persons. Among 18 508 sampled hospitalized adults, use of remdesivir and systemic corticosteroids increased from 1.7% and 18.9%, respectively, in March to 53.8% and 74.2%, respectively, in December. Frequency of ICU admission, mechanical ventilation, and vasopressor use decreased from March (37.8%, 27.8%, and 22.7%, respectively) to December (20.5%, 12.3%, and 12.8%, respectively); use of noninvasive respiratory support increased from March to December. LIMITATION: COVID-NET covers approximately 10% of the U.S. population; findings may not be generalizable to the entire country. CONCLUSION: Rates of COVID-19-associated hospitalization, ICU admission, and death were highest in December 2020, corresponding with the third peak of the U.S. pandemic. The frequency of intensive interventions for management of hospitalized patients decreased over time. These data provide a longitudinal assessment of clinical trends among adults hospitalized with COVID-19 before widespread implementation of COVID-19 vaccines. PRIMARY FUNDING SOURCE: Centers for Disease Control and Prevention.
Asunto(s)
COVID-19/terapia , Hospitalización/tendencias , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/uso terapéutico , Adolescente , Corticoesteroides/uso terapéutico , Adulto , Distribución por Edad , Anciano , Alanina/análogos & derivados , Alanina/uso terapéutico , Antivirales/uso terapéutico , COVID-19/etnología , COVID-19/mortalidad , Cuidados Críticos/tendencias , Estudios Transversales , Femenino , Humanos , Unidades de Cuidados Intensivos/tendencias , Tiempo de Internación/tendencias , Masculino , Persona de Mediana Edad , Pandemias , Respiración Artificial/tendencias , SARS-CoV-2 , Estados Unidos/epidemiología , Vasoconstrictores/uso terapéutico , Adulto JovenRESUMEN
BACKGROUND: Candidemia is a common healthcare-associated bloodstream infection with high morbidity and mortality. There are no current estimates of candidemia burden in the United States (US). METHODS: In 2017, the Centers for Disease Control and Prevention conducted active population-based surveillance for candidemia through the Emerging Infections Program in 45 counties in 9 states encompassing approximately 17 million persons (5% of the national population). Laboratories serving the catchment area population reported all blood cultures with Candida, and a standard case definition was applied to identify cases that occurred in surveillance area residents. Burden of cases and mortality were estimated by extrapolating surveillance area cases to national numbers using 2017 national census data. RESULTS: We identified 1226 candidemia cases across 9 surveillance sites in 2017. Based on this, we estimated that 22â 660 (95% confidence interval [CI], 20â 210-25â 110) cases of candidemia occurred in the US in 2017. Overall estimated incidence was 7.0 cases per 100â 000 persons, with highest rates in adults aged ≥ 65 years (20.1/100â 000), males (7.9/100â 000), and those of black race (12.3/100â 000). An estimated 3380 (95% CI, 1318-5442) deaths occurred within 7 days of a positive Candida blood culture, and 5628 (95% CI, 2465-8791) deaths occurred during the hospitalization with candidemia. CONCLUSIONS: Our analysis highlights the substantial burden of candidemia in the US. Because candidemia is only one form of invasive candidiasis, the true burden of invasive infections due to Candida is higher. Ongoing surveillance can support future burden estimates and help assess the impact of prevention interventions.
Asunto(s)
Candidemia , Infección Hospitalaria , Adulto , Anciano , Candida , Candidemia/epidemiología , Humanos , Incidencia , Masculino , Vigilancia de la Población , Estados Unidos/epidemiologíaRESUMEN
Most reported cases of coronavirus disease 2019 (COVID-19) in children aged <18 years appear to be asymptomatic or mild (1). Less is known about severe COVID-19 illness requiring hospitalization in children. During March 1-July 25, 2020, 576 pediatric COVID-19 cases were reported to the COVID-19-Associated Hospitalization Surveillance Network (COVID-NET), a population-based surveillance system that collects data on laboratory-confirmed COVID-19-associated hospitalizations in 14 states (2,3). Based on these data, the cumulative COVID-19-associated hospitalization rate among children aged <18 years during March 1-July 25, 2020, was 8.0 per 100,000 population, with the highest rate among children aged <2 years (24.8). During March 21-July 25, weekly hospitalization rates steadily increased among children (from 0.1 to 0.4 per 100,000, with a weekly high of 0.7 per 100,000). Overall, Hispanic or Latino (Hispanic) and non-Hispanic black (black) children had higher cumulative rates of COVID-19-associated hospitalizations (16.4 and 10.5 per 100,000, respectively) than did non-Hispanic white (white) children (2.1). Among 208 (36.1%) hospitalized children with complete medical chart reviews, 69 (33.2%) were admitted to an intensive care unit (ICU); 12 of 207 (5.8%) required invasive mechanical ventilation, and one patient died during hospitalization. Although the cumulative rate of pediatric COVID-19-associated hospitalization remains low (8.0 per 100,000 population) compared with that among adults (164.5),* weekly rates increased during the surveillance period, and one in three hospitalized children were admitted to the ICU, similar to the proportion among adults. Continued tracking of SARS-CoV-2 infections among children is important to characterize morbidity and mortality. Reinforcement of prevention efforts is essential in congregate settings that serve children, including childcare centers and schools.
Asunto(s)
Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/terapia , Hospitalización/estadística & datos numéricos , Neumonía Viral/diagnóstico , Neumonía Viral/terapia , Adolescente , Betacoronavirus/aislamiento & purificación , COVID-19 , Niño , Preescolar , Enfermedad Crónica , Servicios de Laboratorio Clínico , Infecciones por Coronavirus/epidemiología , Etnicidad/estadística & datos numéricos , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Pandemias , Obesidad Infantil/epidemiología , Neumonía Viral/epidemiología , Factores de Riesgo , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Estados Unidos/epidemiologíaRESUMEN
BACKGROUND: Weather variability is associated with enteric infections in people through a complex interaction of human, animal, and environmental factors. Although Campylobacter infections have been previously associated with precipitation and temperature, the association between precipitation and drought on campylobacteriosis has not been studied. OBJECTIVE: Using data from Arizona, Colorado, New Mexico, and counties in Utah, this ecological study aimed to assess the association between precipitation and the incidence of campylobacteriosis by county from 2009 to 2021 and to determine how this association is modified by prior drought level and animal operations. METHODS: We merged 38,782 cases of campylobacteriosis reported in 127 counties with total precipitation (in inches), temperature (in average degrees Fahrenheit), Palmer Drought Severity Index (PDSI, category), and animal census data (presence, density per square mile) by week from 2009 to 2021. Negative binomial generalized estimating equations adjusted for temperature with a 3-wk lag were used to explore the association between precipitation on campylobacteriosis with resulting incidence rate ratios (IRRs). Stratified analyses explored the association with precipitation following antecedent drought, presence of farm operations, and animal density. RESULTS: A 1-in (25.4 mm) increase in precipitation was associated with a 3% increase in campylobacteriosis reported 3 wks later (IRR=1.03; 95% CI: 1.02, 1.04) after adjusting for average temperature and PDSI. Compared with normal conditions, there were significantly more cases when precipitation followed antecedent extremely wet (IRR=1.15; 95% CI: 1.04, 1.26), very wet (IRR=1.09; 95% CI: 1.01, 1.18), moderately wet (IRR=1.06; 95% CI: 1.01, 1.12), moderate drought (IRR=1.11; 95% CI: 1.07, 1.16), and severe drought (IRR=1.06; 95% CI: 1.02, 1.11) conditions, whereas there were significantly fewer cases (IRR=0.89; 95% CI: 0.85, 0.94) for antecedent extreme drought. Compared to counties with no animal operations, counties with animal operations had significantly more cases following precipitation for every PDSI category except extreme drought. Counties with a higher density of beef cattle, goats for meat, chicken broilers, and chicken layers had significantly higher rates of campylobacteriosis following precipitation than those with no such operations, whereas those with dairy cattle and goats for milk, did not. DISCUSSION: In this majority arid and semiarid environment, precipitation following prior wet conditions and moderate and severe drought were significantly associated with increased rates of campylobacteriosis, and only in prior extreme drought did rates decrease. Where the precipitation fell made a difference; after precipitation, counties with farm operations had significantly more cases compared to counties without farm operations. Further work should assess individual-level risk factors within environmental exposure pathways for Campylobacter. https://doi.org/10.1289/EHP14693.
Asunto(s)
Infecciones por Campylobacter , Sequías , Lluvia , Infecciones por Campylobacter/epidemiología , Animales , Humanos , Incidencia , Sudoeste de Estados Unidos/epidemiología , Adulto , Adolescente , Femenino , Masculino , Niño , Persona de Mediana Edad , Preescolar , Adulto Joven , Anciano , Lactante , Crianza de Animales DomésticosRESUMEN
OBJECTIVE: To characterize residential social vulnerability among healthcare personnel (HCP) and evaluate its association with severe acute respiratory coronavirus virus 2 (SARS-CoV-2) infection. DESIGN: Case-control study. SETTING: This study analyzed data collected in May-December 2020 through sentinel and population-based surveillance in healthcare facilities in Colorado, Minnesota, New Mexico, New York, and Oregon. PARTICIPANTS: Data from 2,168 HCP (1,571 cases and 597 controls from the same facilities) were analyzed. METHODS: HCP residential addresses were linked to the social vulnerability index (SVI) at the census tract level, which represents a ranking of community vulnerability to emergencies based on 15 US Census variables. The primary outcome was SARS-CoV-2 infection, confirmed by positive antigen or real-time reverse-transcriptase- polymerase chain reaction (RT-PCR) test on nasopharyngeal swab. Significant differences by SVI in participant characteristics were assessed using the Fisher exact test. Adjusted odds ratios (aOR) with 95% confidence intervals (CIs) for associations between case status and SVI, controlling for HCP role and patient care activities, were estimated using logistic regression. RESULTS: Significantly higher proportions of certified nursing assistants (48.0%) and medical assistants (44.1%) resided in high SVI census tracts, compared to registered nurses (15.9%) and physicians (11.6%). HCP cases were more likely than controls to live in high SVI census tracts (aOR, 1.76; 95% CI, 1.37-2.26). CONCLUSIONS: These findings suggest that residing in more socially vulnerable census tracts may be associated with SARS-CoV-2 infection risk among HCP and that residential vulnerability differs by HCP role. Efforts to safeguard the US healthcare workforce and advance health equity should address the social determinants that drive racial, ethnic, and socioeconomic health disparities.
Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Estudios de Casos y Controles , Vulnerabilidad Social , Atención a la SaludRESUMEN
BACKGROUND: Understanding characteristics of healthcare personnel (HCP) with SARS-CoV-2 infection supports the development and prioritization of interventions to protect this important workforce. We report detailed characteristics of HCP who tested positive for SARS-CoV-2 from April 20, 2020 through December 31, 2021. METHODS: CDC collaborated with Emerging Infections Program sites in 10 states to interview HCP with SARS-CoV-2 infection (case-HCP) about their demographics, underlying medical conditions, healthcare roles, exposures, personal protective equipment (PPE) use, and COVID-19 vaccination status. We grouped case-HCP by healthcare role. To describe residential social vulnerability, we merged geocoded HCP residential addresses with CDC/ATSDR Social Vulnerability Index (SVI) values at the census tract level. We defined highest and lowest SVI quartiles as high and low social vulnerability, respectively. RESULTS: Our analysis included 7,531 case-HCP. Most case-HCP with roles as certified nursing assistant (CNA) (444, 61.3%), medical assistant (252, 65.3%), or home healthcare worker (HHW) (225, 59.5%) reported their race and ethnicity as either non-Hispanic Black or Hispanic. More than one third of HHWs (166, 45.2%), CNAs (283, 41.7%), and medical assistants (138, 37.9%) reported a residential address in the high social vulnerability category. The proportion of case-HCP who reported using recommended PPE at all times when caring for patients with COVID-19 was lowest among HHWs compared with other roles. CONCLUSIONS: To mitigate SARS-CoV-2 infection risk in healthcare settings, infection prevention, and control interventions should be specific to HCP roles and educational backgrounds. Additional interventions are needed to address high social vulnerability among HHWs, CNAs, and medical assistants.